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1. Suppose g is an odd function and let h = f ◦ g.
(a) (4 pts) Is h always an odd function?

Not always. E.g. if f(x) = x2 and g(x) = x3 then

h(x) = f ◦ g(x) =
(

x3
)2

= x6,

which we know is not an odd function since h(−x) = (−x)6 = x6 6= −x6 = −h(x) for
any nonzero x.
Notice that this one example is enough to show that h is not always am odd function.

(b) (3 pts) What if f is odd? Is h odd, even, or neither in that case?

If f is also odd, then h will always be odd. We cannot prove this with just one example
because there are infinitely many ways to choose the odd functions f and g. We need a
general argument. Here is one. If f and g are both odd functions, then f(−x) = −f(x)
and g(−x) = −g(x) for all x. Hence

h(−x) = f(g(−x)) = f(−g(x)) = −f(g(x)) = −h(x)

for all x. This shows that h is an odd function.

(c) (3 pts) What if f is even? Does that make h odd, even, or neither?

In this case, h will always be an even function. If f is even and g is odd, then f(−x) =
f(x) and g(−x) = −g(x) for all x. Hence

h(−x) = f(g(−x)) = f(−g(x)) = f(g(x)) = h(x)

for all x. This shows that h is an even function.

2. (5 pts each)
(a) Use the Limit Laws to find the value of

lim
x→0

√
3 + x−

√
3

x
.

First, it is tempting to use Limit Law #5 to rewrite the limit of this quotient as the
quotient of two limits. But that does not work because the limit in the denominator
limx→0 x = 0 and LL #5 cannot be used in such a case. So the first thing we will do
is multiply both the numerator and the denominator by

√
3 + x+

√
3 to rationalize the

numerator: √
3 + x−

√
3

x
=

√
3 + x−

√
3

x

√
3 + x+

√
3√

3 + x+
√
3

=

√
3 + x

2 −
√
3
2

x(
√
3 + x+

√
3)

=
3 + x− 3

x(
√
3 + x+

√
3)

=
x

x(
√
3 + x+

√
3)



=
1√

3 + x+
√
3

where we can cancel the x because x 6= 0 for our purposes, as we are interested in what√
3+x−

√
3

x
approaches as x gets close to 0 but not in what happens when x = 0. Now

lim
x→0

√
3 + x−

√
3

x
= lim

x→0

1√
3 + x+

√
3

=
limx→0 1

limx→0(
√
3 + x+

√
3)

LL #5

=
limx→0 1

limx→0

√
3 + x+ limx→0

√
3

LL #1

=
1

limx→0

√
3 + x+

√
3

LL #7

=
1

√

limx→0(3 + x) +
√
3

LL #11

=
1√

3 + 0 +
√
3

Direct Substitution Property

=
1

2
√
3

(b) Let P and Q be polynomials. Find

lim
x→∞

P (x)

Q(x)

if the degree of P is less than the degree of Q.

We will show that

lim
x→∞

P (x)

Q(x)
= 0.

Rather than giving a general argument with indices and complex notation, I will give
an argument through an example. Notice that the example is general enough that the
same argument works in every case. Let P (x) = 3x2 + 5 and Q(x) = 2x4 − 6x3 + 4x.
Then

lim
x→∞

P (x)

Q(x)
= lim

x→∞

3x2 + 5

2x4 − 6x3 + 4x

Divide both the numerator and the denominator by x4. We can do this because dividing
the numerator and the denominator of a fraction by the same nonzero number does not
change its value, and as x → ∞, we may assume x 6= 0. So

lim
x→∞

3x2 + 5

2x4 − 6x3 + 4x
= lim

x→∞

3x2

x4 + 5
x4

2x4

x4 − 6x3

x4 + 4x
x4

= lim
x→∞

3
x2 + 5

x4

2− 6
x
+ 4

x3

.

Now, as x → ∞, the powers x1, x2, x3, x4 all go toward ∞. This makes the terms
3
x2 ,

5
x4 ,

6
x
, 4
x3 approach 0 as the numerators are fixed numbers while the denominators

get arbitrarily large. So using Limit Laws #1 and #2,

lim
x→∞

(

3

x2
+

5

x4

)

= 0 + 0 = 0

and

lim
x→∞

(

2− 6

x
+

4

x3

)

= 2 + 0 + 0 = 2



And now by Limit Law #5,

lim
x→∞

P (x)

Q(x)
=

0

2
= 0.

In any other case, you can do the same by dividing P (x) and Q(x) by the largest power
of x in Q. Since the terms in P all have lower degree, this will make the numerator
approach 0 while the denominator approaches a specific nonzero number.

(c) Let P and Q be polynomials. Find

lim
x→∞

P (x)

Q(x)

if the degree of P is more than the degree of Q.

The argument is similar to part (b). We will show that

lim
x→∞

P (x)

Q(x)
= ±∞.

Notice that the example below is general enough that the same argument works in every
case. Let P (x) = 2x4 − 6x3 + 4x and Q(x) = 3x2 + 5. Then

lim
x→∞

P (x)

Q(x)
= lim

x→∞

2x4 − 6x3 + 4x

3x2 + 5

Divide both the numerator and the denominator by x2. We can do this because dividing
the numerator and the denominator of a fraction by the same nonzero number does not
change its value, and as x → ∞, we may assume x 6= 0. So

lim
x→∞

2x4 − 6x3 + 4x

3x2 + 5
= lim

x→∞

3x2

x2 + 5
x2

2x4

x2 − 6x3

x2 + 4x
x2

= lim
x→∞

3 + 5
x2

2x2 − 6x+ 4
x

.

Now, as x → ∞, the powers x1 and x2 all go toward ∞. This makes the terms 5
x2 ,

4
x

approach 0 as the numerators are fixed numbers while the denominators get arbitrarily
large. So using Limit Law #1

lim
x→∞

(

3 +
5

x2

)

= 3 + 0 = 3.

As for the denominator, the 2x2 term goes to ∞ as x → ∞. The −6x term goes toward
−∞, but the 2x2 term grows faster and eventually dominates, so 2x2 − 6x → ∞ as
x → ∞. So

lim
x→∞

(

2x2 − 6x+
4

x

)

= ∞

while the numerator approaches 2. A large number divided by 2 is still a large number,
so

lim
x→∞

P (x)

Q(x)
= ∞

in this case.
In any other case, you can do the same by dividing P (x) and Q(x) by the largest power
of x in Q. Since some terms in P have higher degree, this will make the numerator
approach ∞, or −∞ if the coefficient of the highest degree term is negative, while the
denominator approaches a specific nonzero number. Hence the limit will always be ∞
or −∞.



3. (10 pts) Where is the function h(x) = |x − 1| + |x + 2| differentiable? Give a formula for
h′(x) and sketch the graphs of h and h′.

Notice that if x ≥ 1 then x+ 2 > 0 and x− 1 ≥ 0, so

|x− 1|+ |x+ 2| = x− 1 + x+ 2 = 2x+ 1.

Similarly, if x < −2 then x+ 2 < 0 and x− 1 < 0, so

|x− 1|+ |x+ 2| = −(x− 1)− (x+ 2) = −x+ 1− x− 2 = −2x− 1.

Finally, if −2 ≤ x < 1 then x− 1 < 0 and x+ 2 ≥ 0, so

|x− 1|+ |x+ 2| = −(x− 1) + x+ 2 = −x+ 1 + x+ 2 = 3.

So h can also be expressed as the piecewise defined function

h(x) =











2x+ 1 if 1 ≤ x

3 if −2 ≤ x < 1

−2x− 1 if x < −2

Here is the graph of h:
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It is easy to see either from the graph, or by differentiating h on the various pieces, that the
slope of h is -2 at x < −2, 0 at −2 < x < 1, and 2 at 1 < x. At x = −2 and at x = 1, the
graph has a sharp corner, so h is not differentiable at these points. More precisely,

lim
x→1

h(x)− h(1)

x− 1

does not exist because the left and right limits are different:

lim
x→1−

h(x)− h(1)

x− 1
= lim

x→1−

3− 3

x− 1
= lim

x→1−

0

x− 1
= 0,

as h(x) = 3 when x is close to 1 but x < 1. But

lim
x→1+

h(x)− h(1)

x− 1
= lim

x→1−

2x+ 1− 3

x− 1
= lim

x→1−

2x− 2

x− 1
= lim

x→1−
2 = 2,

as h(x) = 2x + 1 when x is close to 1 but x > 1. Similarly, the left and right derivates at
x = −2 are −2 and 0. So

h′(x) =











2 if 1 < x

0 if −2 < x < 1

−2 if x < −2



Here is the graph of h′:
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Since h′(x) exists for every real number x except x = −2 and x = 1, the function h is
differentiable everywhere but x = −2 and x = 1.

4. (a) (4 pts) Let f be a function (real inputs, real values). Define what it means for f to be
continuous at a point x = a.

The function f is continuous at x = a if

lim
x→a

f(x) = f(a).

(b) (6 pts) Give an example of a function f that is left continuous but not right continuous
at some point x = b. Be sure to carefully explain why your function satisfies these two
requirements.

Let

f(x) =

{

1 if x > 0

−1 if x ≤ 0

Then f is left continuous at x = 0 because

lim
x→0−

f(x) = −1 = f(0)

as f(x) = −1 as x gets close to 0 from the left. But f is not right continuous at x = 0
because

lim
x→0+

f(x) = 1 6= f(0)

as f(x) = 1 as x gets close to 0 from the right.

5. (a) (8 pts) Let f(x) = 1/x. Use the definition of the derivative to find f ′(x). Then use your
result to find the equation of the tangent line to f at x = 3.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

1
x+h

− 1
x

h

= lim
h→0

x−(x+h)
x(x+h)

h



= lim
h→0

−h

x(x+h)

h

= lim
h→0

−1

x(x+ h)
=

−1

x2
,

where the last step is by the Direct Substitution Property of rational functions.
Therefore the slope of the tangent line to f at x = 3 is f ′(3) = −1/32 = −1/9. Hence
the equation of the tangent line is y = −x/9 + b. The tangent line passes through
(3, 1/3), so

1

3
= −3

9
+ b =⇒ 1

3
+

3

9
= b =⇒ b =

2

3
.

So the equation of the tangent line is y = −x/9 + 2/3.

(b) (7 pts) Find the derivative of

f(x) =
ln(x)

ex2
.

You can do this with the quotient rule and the chain rule, or the product rule and the
chain rule. I will do the latter:

d

dx

ln(x)

ex2
=

d

dx

(

ln(x)e−x
2)

=
d

dx
ln(x)e−x

2

+ ln(x)
d

dx
e−x

2

product rule

=
1

x
e−x

2

+ ln(x)e−x
2

(−2x) chain rule

=
1
x
− 2x ln(x)

ex2
.

6. (10 pts) Looking at his list of who has been naughty and who has been nice, Santa says
“how interesting, if I add the square of the percentage of children who have been naughty to
the square of the percentage of children who have been nice, the result I get is the smallest
it could possibly be.” What are the two percentages?

Notice that this is the same problem we did in class when we found the smallest possible
number that is the sum of the squares of two nonnegative numbers whose sum is 16 (problem
4.7.4 in your textbook), only with different numbers and a Santa story. So, let x and y be
the percentages of children who have been naughty and who have been nice respectively. We
are looking for values of x and y such that x2 + y2 is minimal. Since x+ y = 100% = 1, we
can solve for y = 1− x and subsitute it into

x2 + y2 = x2 + (1− x)2 = x2 + 1− 2x+ x2 = 2x2 − 2x+ 1

Let f(x) = 2x2− 2x+1. We want to find the global minimum of f on the interval x ∈ [0, 1].
By Fermat’s Theorem, the global minimum must be at an endpoint of the closed interval or
at a critical point of f . Since f is a polynomial, it is differentiable at every real number, so
the only kind of critical point it has is where its derivative f ′(x) = 2(2x)− 2 + 0 = 4x− 2 is
0. So

4x− 2 = 0 =⇒ 4x = 2 =⇒ x =
1

2
.



The values of f at this critical point and at x = 0 and x = 1 are

f(0) = 2(02)− 2(0) + 1 = 1

f(1/2) = 2(1/2)2 − 2(1/2) + 1 = 1/2

f(1) = 2(12)− 2(1) + 1 = 1.

That is the miminum is at x = 1/2. This gives y = 1/2, so the percentages of naughty and
nice children on Sahta’s list were both 50%.

7. Extra credit problem. The purpose of this exercise is to prove the Squeeze Theorem: if
f , g, and h are functions such that

f(x) ≤ g(x) ≤ h(x)

for every x in some neighborhood of b, and there is a real number L such that

lim
x→b

f(x) = lim
x→b

h(x) = L,

then
lim
x→b

g(x) = L.

So let f , g, and h be functions and L a real number that satisfy the two conditions above.
(a) (10 pts) First, notice that limx→b [h(x)− f(x)] = 0 by Limit Law #2. Use this to show

that given any ǫ > 0, there is a corresponding δ > 0 such that if 0 < |x − b| < δ then
|g(x)− f(x)| < ǫ. Conclude from this that limx→b [g(x)− f(x)] = 0.

Let ǫ be any positive real number. Since limx→b [h(x) − f(x)] = 0, we know that for
every such ǫ, there exists a δ > 0 such that if 0 < |x− b| < δ then |h(x)− f(x)| < ǫ. We
also know

f(x) ≤ g(x) ≤ h(x)

for every x near b, and subtracting f(x) from all sides gives

0 ≤ g(x)− f(x) ≤ h(x)− f(x).

So h(x) − f(x) is actually nonnegative and therefore |h(x) − f(x)| = h(x) − f(x). We
know this is smaller than ǫ. We now have

0 ≤ g(x)− f(x) ≤ h(x)− f(x) < ǫ.

Therefore
|g(x)− f(x)| = g(x)− f(x) < ǫ.

Since we can make |g(x) − f(x)| < ǫ for any ǫ > 0 by choosing an appropriate δ and
requiring that 0 < |x− b| < δ, we know that limx→b [g(x)− f(x)] = 0.

(b) (5 pts) Use your result from part (a) to prove that limx→b g(x) = limx→b f(x) = L. If
you did not know how to do part (a), you may still use limx→b [g(x) − f(x)] = 0 to do
part (b).

Notice that

lim
x→b

g(x) = lim
x→b

[g(x)− f(x) + f(x)]

= lim
x→b

[g(x)− f(x)] + lim
x→b

f(x) LL #1

= 0 + L = L


