
MCS 121 Exam 2 Solutions

Nov 9, 2017

1. (10 pts) Use the given graph of f to state the value of each quantity, if it exists. If the limit
exists, explain why it is what you say it is; if it does not exist, explain why it does not exist.

(a) lim
x→2−

f(x) (b) lim
x→2+

f(x) (c) lim
x→2

f(x)

(d) f(2) (e) lim
x→4

f(x) (f) f(4)

(a) limx→2− f(x) = 3 because as x approaches 2 from the left, the values of f get arbitrarily
close to 3. Note that the fact that the values actually reach 3 as x = 2 is irrelevant.

(b) limx→2+ f(x) = 1 because as x approaches 2 from the right, the values of f get arbitrarily
close to 1.

(c) limx→2 f(x) does not exist because the left and right limits of f as x approaches 2 are
different.

(d) f(2) = 3 because the filled circle indicates that (2, 3) is a point on the graph of f .
(e) limx→4 f(x) = 4 because as x approaches 4, the values of f get arbitrarily close to 4.
(f) f(4) does not exist because there is no point on the graph whose x coordinate is 4.

2. (5 pts each)
(a) What is wrong with the following equation?

x2 + x− 6

x− 2
= x+ 3

If x = 2, the left-hand side is 0/0, which is undefined, while the right-hand side is 5. So
the two sides are not equal.

(b) In view of part (a), explain why the equation

lim
x→2

x2 + x− 6

x− 2
= lim

x→2
(x+ 3)

is correct.

This is correct because the limit is taken as x gets close to 2. As far as the limit goes,
the value of the function when x = 2 is irrelevant. And at any x 6= 2, it is indeed true



that
x2 + x− 6

x− 2
= x+ 3.

Note that this is why in the δ − ǫ definition of the limit, we have 0 < |x − b| < δ and
not only |x− b| < δ.

3. (a) (4 pts) Let f be a function and b a real number. Define what

lim
x→b

f(x) = ∞
means.

limx→b f(x) = ∞ means that the values of f get arbitrarily large as x gets sufficiently
close to b. More precisely, for any real number M , however large, there is a δ > 0 such
that if 0 < |x− b| < δ then f(x) > M .

(b) (6 pts) Give an example of a function f and a real number b such that

lim
x→b

f(x) = ∞.

Make sure you carefully explain why your example does indeed have a limit of infinity
as x approaches b.

For example, limx→0
1
x2 = ∞. When x is a number that is close to 0, x2 will be even

closer to 0 and it will be positive. So 1/x2 will be a large positive number. In fact, we
can make 1/x2 as big as we want by making x get sufficiently close to 0.
Here is a more precise argument. Let M be any positive real number. Since we want
to show that 1/x2 can be arbitrarily large, negative values of M are not really relevant.
So we might as well assume that M > 0. We want to find how close x has to be to 0 so
1/x2 > M . By solving this inequality, we get

1

x2
> M

1

M
> x2

√

1

M
>

√
x2

1√
M

> |x|

So if 0 < |x| < 1/
√
M , that is x is closer to 0 than a distance of 1/

√
M but x is not 0,

then 1/x2 > M . No matter how large M is, 1/
√
M will be some positive distance.

4. (10 pts) Let f(x) =
√
x. Use the limit laws to evaluate

lim
h→0

f(x+ h)− f(x)

h
.

Justify each step of your work by referring to the limit law(s) you are using.

First, we substitute x and x+ h into f ,:

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

√
x+ h−√

x

h

We will now multiply
√
x+h−

√
x

h
by

√
x+h+

√
x√

x+h+
√
x
, which we can do because

√
x+h+

√
x√

x+h+
√
x
= 1 unless

the numerator and the denominator are both 0. But that would only happen if x = h = 0.



In fact, we are not interested in what happens when h = 0 because the limit is about what

happens to the values of f(x+h)−f(x)
h

as h gets close to 0, but not at h = 0. So

lim
h→0

√
x+ h−√

x

h

= lim
h→0

√
x+ h−√

x

h

√
x+ h+

√
x√

x+ h+
√
x

= lim
h→0

(x+ h)− x

h
(√

x+ h+
√
x
)

= lim
h→0

h

h
(√

x+ h+
√
x
)

= lim
h→0

1√
x+ h+

√
x

we can cancel h since h 6= 0

=
lim
h→0

1

lim
h→0

(
√
x+ h+

√
x
) by Limit Law #5

=
1

lim
h→0

√
x+ h+ lim

h→0

√
x

by Limit Laws #7 and #2

=
1

√

lim
h→0

(x+ h) +
√

lim
h→0

x
by Limit Law #11

=
1√

x+ 0 +
√
x

by the Direct Substitution Property

=
1

2
√
x

5. (10 pts) Extra credit problem. Let f be a function and b a real number. Use the delta-
epsilon definition of the limit to prove that if lim

x→b
f(x) = L for some real number L, then

lim
x→b−

f(x) and lim
x→b+

f(x) both exist and

lim
x→b−

f(x) = lim
x→b+

f(x) = L.

Let f be a function and b ∈ R such that

lim
x→b

f(x) = L.

To prove that
lim
x→b+

f(x) = L,

we need to show that for any ǫ > 0 there exists a δ > 0 such that if 0 < x − b < δ then
|f(x) − L| < ǫ. Since limx→b f(x) = L, we can choose a δ > 0 such that if 0 < |x − b| < δ
then |f(x)− L| < ǫ . We can use the same δ to say that if 0 < x− b < δ then it is also true
that 0 < |x− b| < δ and hence |f(x)− L| < ǫ. Therefore limx→b+ f(x) = L.

Similary, given any ǫ > 0, we can choose a δ > 0 such that if 0 < |x − b| < δ then
|f(x) − L| < ǫ since limx→b f(x) = L. Now, if 0 < b − x < δ then it is also true that
0 < |b− x| < δ. But |b− x| = |x− b|, so we have 0 < |b− x| < δ and hence |f(x) − L| < ǫ.
Therefore limx→b− f(x) = L.


