
MCS 121 Final Exam Solutions

1. (10 pts) Let

f(x) =
x

1 + x
and g(x) = sin(2x).

Find f ◦ g and the largest possible subset of the real numbers that could be the domain of
f ◦ g. Remember to justify your answer.

‘

The composition f ◦ g is

f ◦ g(x) = f(g(x)) = f(sin(2x)) =
sin(2x)

1 + sin(2x)
.

To find the domain, note that sin(2x) exists for any real number x because the domain of
the sine function is R. But the division can only be done if 1+ sin(2x) 6= 0. For what values
of x is 1 + sin(2x) = 0? This happens whenever sin(2x) = −1. Looking at the graph of the
sine function
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shows that sin(2x) = −1 whenever 2x = 3π
2 +k2π where k ∈ Z. Divide by 2 to get x = 3π

4 +kπ.
These are the values of x that makes the denominator of f ◦ g(x) equal 0, so they must be
excluded from the domain. Other real numbers do not cause any trouble. So

D(f ◦ g) = {x ∈ R | x =
3π

4
+ kπ where k is any integer}.

2. (10 pts) Use the Squeeze Theorem to show that

lim
x→0

[√

x3 + x2 sin
(π

x

)]

= 0.

Hint: Here is the graph of this function to help you find two functions such that f(x) =√
x3 + x2 sin(π/x) is squeezed between them for values of x close to 0 (how close exactly?).
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Let f(x) =
√
x3 + x2 sin(π/x). It is clear that x = 0 is not in the domain of g since we

would have a 0 in the denominator if x = 0. Since we are interested in x → 0, we actually
know x 6= 0 in this context. Let g(x) = −

√
x3 + x2 and h(x) =

√
x3 + x2. The diagram

above includes the graphs of g and h in blue and green respectively. The graph of f is red.
Note that

x3 + x2 = x2(x+ 1).

If x is close to 0, but not equal to 0, x2 is positive. So is x + 1. In fact x + 1 > 0 for all
x > −1. So x3 + x2 > 0 if x > −1 and x 6= 0. Therefore

√
x3 + x2 > 0 if x > −1 and x 6= 0.

We know

−1 ≤ sin
(π

x

)

≤ 1

for all real numbers x 6= 0. Since we are interested in what happens as x → 0, we may
assume x > 1 and x 6= 0. We can now multiply all sides of the inequality above by the
positive number

√
x3 + x2:

−
√

x3 + x2
︸ ︷︷ ︸

g(x)

≤
√

x3 + x2 sin
(π

x

)

︸ ︷︷ ︸

f(x)

≤
√

x3 + x2
︸ ︷︷ ︸

h(x)

.

That is f(x) is squeezed between g(x) and h(x) for all x 6= 0 near 0.
Now,

lim
x→0

√

x3 + x2 =
√

lim
x→0

(x3 + x2)) by LL11

=
√

03 + 02 by direct substitution into the polynomial

= 0

Now it follows by LL3 that

lim
x→0

√

x3 + x2 = − lim
x→0

√

x3 + x2 = 0.

Therefore

lim
x→0

[√

x3 + x2 sin
(π

x

)]

= 0

by the Squeeze Theorem.

3. (10 pts) Find equations of both lines through the point (2,−3) that are tangent to the
parabola y = x2 + x.



Since y′(x) = 2x+1, the slope of the tangent line at some point a is y′(a) = 2a+1. Hence
the equation of the tangent line is y = (2a+1)x+ b. We can find b by substituting the point
(a, a2 + a) into the equation of the line:

a2 + a = (2a+ 1)a+ b =⇒ b = a2 + a− (2a+ 1)a = −a2.

So the equation of the tangent line at x = a is y = (2a+ 1)x− a2. This line passes through
(2,−3) if (2,−3) satisfies the equation:

−3 = (2a+ 1)2− a2 ⇐⇒ a2 − 4a− 5 = 0 ⇐⇒ (a− 5)(a+ 1) = 0

So either a = 5 or a = −1, and the equations of the two tangent lines that pass through
(2,−3) are

y = 11x− 25 and y = −x− 1.

4. (10 pts) Use the formal definition of the limit (that is ǫ and N) to show that

lim
x→∞

1

x3
= 0.

We need to show that for all ǫ > 0 there is exists some corresponding number N such that
if x > N , then

∣
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∣
∣
∣
∣
< ǫ.

Suppose ǫ > 0. We want to make
∣
∣
∣
∣

1

x3
− 0

∣
∣
∣
∣
< ǫ

true. Note that x → ∞, so we can assume x is positive. Therefore 1/x3 − 0 = 1/x3 is a
positive number. So we do not need the absolute value. Since x3 and ǫ are boht positive,

1

x3
< ǫ =⇒ 1 < ǫx3 =⇒ 1

ǫ
< x3.

The cube root function f(x) = 3
√
x is increasing on all real numbers, so we can take cube

roots of both sides:

1

ǫ
< x3 =⇒ 3

√

1

ǫ
<

3
√
x3 = x =⇒ 1

3
√
ǫ
< x.

This suggests that we should set N = 1/ 3
√
ǫ. We will now show that if x > N = 1/ 3

√
ǫ, then

∣
∣
∣
∣

1

x3
− 0

∣
∣
∣
∣
< ǫ.

Suppose x > 1/ 3
√
ǫ. Since the cube function g(x) = x3 is increasing on all real numbers, we

can cube both sides:
1
3
√
ǫ
< x =⇒

(
1
3
√
ǫ

)3

< x3.

Since x3 and ǫ are both positive,

1

ǫ
< x3 =⇒ 1 < ǫx3 =⇒ 1

x3
< ǫ.

It follows that ∣
∣
∣
∣

1

x3
− 0

∣
∣
∣
∣
=

1

x3
< ǫ.



5. (10 pts) Use the definition of the derivative to find

d

dx

1√
x+ 3

.

Be sure to carefully justify every step of your calculation.

Let f(x) = 1/(
√
x+ 3). Then

f ′(a) = lim
x→a

1√
x+3

− 1√
a+3

x− a
= lim

x→a

√
a+3−(

√
x+3)

(
√
x+3)(

√
a+3)

x− a
= lim

x→a

√
a−√

x

(x− a)(
√
x+ 3)(

√
a+ 3)

.

We will want to multiply and divide by
√
a +

√
x, but we can only do that if we know it is

not 0. Since
√
a ≥ 0 and

√
x ≥ 0, the only way

√
a +

√
x could be 0 is if x = 0 and a = 0.

But we know x 6= a as x → a. So for sure,
√
a+

√
x 6= 0. Therefore,

lim
x→a

√
a−√

x

(x− a)(
√
x+ 3)(

√
a+ 3)

= lim
x→a

(
√
a−√

x)(
√
a+

√
x)

(
√
a+

√
x)(x− a)(

√
x+ 3)(

√
a+ 3)

= lim
x→a

a− x

(
√
a+

√
x)(x− a)(

√
x+ 3)(

√
a+ 3)

= lim
x→a

−1

(
√
a+

√
x)(

√
x+ 3)(

√
a+ 3)

=
limx→a(−1)

limx→a

[
(
√
a+

√
x)(

√
x+ 3)(

√
a+ 3)

] by LL5

=
−1

limx→a(
√
a+

√
x) limx→a(

√
x+ 3) limx→a(

√
a+ 3)

by LL7 and LL4

= − 1

(limx→a

√
a+ limx→a

√
x)(limx→a

√
x+ limx→a 3)(

√
a+ 3)

by LL1 and LL7

= − 1

(
√
a+

√
a)(

√
a+ 3)(

√
a+ 3)

by LL7 and LL10

= − 1

2
√
a)(

√
a+ 3)2

.

We can conclude
d

dx

1√
x+ 3

= − 1

2
√
x)(

√
x+ 3)2

.

Note that you can easily check your answer here by finding the derivative using the chain
rule.

6. (5 pts each) Let f(x) = csc(x) = 1/ sin(x).
(a) Find the critical points of f on the interval [0, 2π].

Let us find f ′:

f ′(x) = [sin(x)]−1 = (−1)[sin(x)]−2 cos(x) = − cos(x)

sin2(x)
.

by the Chain Rule. We also could have used the Quotient Rule to differentiate f . We
are looking for values of x where f ′(x) = 0 or does not exist. It immediately stands
out that f ′(x) does not exist if sin2(x) = 0, which true whenever sin(x) = 0. But if
sin(x) = 0, then f(x) = 1/ sin(x) does not have a value either. So any place where
the denominator of f ′(x) is 0 also does not belong to the domain of f . In fact, if x
is any number such that sin(x) 6= 0, then f ′(x) has a legitimate value. That is f is



differentiable at every x in its domain. So the only kind of critical point it can have is
where f ′(x) = 0. It is clear that

0 = f ′(x) = − cos(x)

sin2(x)

when cos(x) = 0 and sin(x) 6= 0. The only numbers in [0, 2π] where cos(x) = 0 are π/2
and 3π/2. In fact,

f ′
(π

2

)

= − cos(π/2)

sin2(π/2)
= − 0

12
= 0

f ′
(
3π

2

)

= − cos(3π/2)

sin2(3π/2)
= − 0

(−1)2
= 0.

So the critical points of f on [0, 2π] are π/2 and 3π/2.

(b) Use either f ′ or f ′′ to decide which of the critical points you found in part (a) are local
minima, which ones are local maxima, and which ones are neither.

For x close to π/2, the value of cos(x) is positive if x < π/2 and negative if x > π/2.
The value of sin2(x) is some number close to 1. So f ′(x) = − cos(x)/ sin2(x) switches
sign from negative to positive at π/2. Hence f has a local minimum at π/2.
For x close to 3π/2, the value of cos(x) is negative if x < 3π/2 and positive if x > 3π/2.
The value of sin2(x) is some number close to 1. So f ′(x) = − cos(x)/ sin2(x) switches
sign from positive to negative at 3π/2. Hence f has a local maximum at 3π/2.

Alternately, we can find f ′′ using the Quotient Rule and the Chain Rule:

f ′′(x) = −
(

d
dx

cos(x)
)
sin2(x)− cos(x) d

dx
sin2(x)

sin4(x)

= −− sin(x) sin2(x)− cos(x)2 sin(x) cos(x)

sin4(x)

=
sin(x)

(
sin2(x) + 2 cos2(x)

)

sin4(x)

=
sin2(x) + 2 cos2(x)

sin3(x)

=

1
︷ ︸︸ ︷

sin2(x) + cos2(x)+ cos2(x)

sin3(x)

=
1 + cos2(x)

sin3(x)
.

Now,

f ′′
(π

2

)

=
1 + cos2(π/2)

sin3(π/2)
=

1 + 02

13
= 1

f ′′
(
3π

2

)

=
1 + cos2(3π/2)

sin3(3π/2)
=

1 + 02

(−1)3
= −1.

So by the Second Derivative Test, f has a local minimum at π/2 and a local maximum
at 3π/2.



7. Extra credit problem.

(a) (8 pts) In a contest between two rival monasteries, two Tibetan monks leave their monas-
teries at 7:00 AM to climb the same mountain. The two monasteries are exactly the same
distance from the peak. The contest is a tie when both monks reach the peak at exactly 7:00
PM. Show that there was a point in time during the day when both monks were walking at
exactly the same velocity.

Hint: Verify that the difference of the position functions satisfies the conditions of Rolle’s
Theorem or the Mean Value Theorem, then apply the theorem.

Let t be time measured in hours after 7:00 AM. Let f(t) be the first monk’s position
along the path measured from his starting point at the bottom of the mountain. Let
g(t) be the second monk’s position along the path measured similarly. Then we know
f(0) = g(0) = 0 and f(12) = g(12) = d where d is the distance of the peak from the
monasteries along the paths the monks take.
Note that f and g must be continuous functions of time, as monks are subject to the laws
of physics and therefore their position must vary continuously with time (e.g. monks
cannot teleport and just show up in a different place from one moment to the next.)
Also, both f and g must be differentiable functions because the monks must always be
walking at some velocity, and velocity is the derivative of position with respect to time.
Now, let h(t) = f(t)− g(t). Since f and g are continuous and differentiable, so is h. We
know h(0) = f(0) − g(0) = 0 and h(12) = f(12) − g(12) = 0. Therefore h satisfies the
conditions of Rolle’s Theorem over the interval [0, 12]. By Rolle’s Theorem, there must
be some c ∈ (0, 12) where 0 = h′(c) = f ′(c)− g′(c). So f ′(c) = g′(c). That is the monks
are moving at the same velocity at time c.

(b) (7 pts) Suppose three monks from three monasteries all the same distance from the peak
compete to climb the mountain. All three leave at 7:00 AM and the race is tied when they
all arrive at 7:00 PM. Does there have to be a time when all three are walking at the same
velocity? If you think there must be such a point in time, prove it; if you do not think there
is, find an argument or counterexample to show it.

There does not have to be such a time. Let f(t), g(t), and h(t) be the positions of the
three monks as a function of time. Consider the following three graphs:
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Notice that the first monk walks at a constant rate. The second monk initially walks
fast then slows down. The only time when his velocity is the same as the first monk’s is
at time a. The third monk initially walks slowly then speeds up. The only time when
his velocity is the same as the first monk’s is at time b. So there is no point in time
when both the second and third monks move at the same velocity as the first monk. So
at no time do all three monks walk at the same velocity.


