MCS 122 ExXAM 1 SOLUTIONS

1. (10 pts) Use the limit of a right-hand Riemann sum with a uniform partition to evaluate the
integral
4
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Some of the following summation formulas may be helpful:

oo nn+1
S

1
2 nn+1)(2n+1)
N 6

n
1=

™

1=

3

1
Zig . 77,2(7’1 + 1)2
: B 4
=1

Let f(z) = 22 — 3z. If we divide the interval [0,4] into n uniform subintervals, each of
those will have width 4/n. The subintervals are

[o:j , L‘szi] , [2i3i] [(n—ni,@

Since we are using the right endpoints of these intervals, the sample points are x} = (4i)/n.
Hence the Riemann sum is
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We will now take the limit as n — oo:
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2. (10 pts) Let f be a function that is twice differentiable and has an inverse g. Show that
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By Theorem 7 in Section 5.1,

g/(x) = / 1 °
f'(g(z))
We can differentiate this again to get
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This is what we wanted to show.

3. (5 pts each) Find the following derivatives.
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By the Fundamental Theorem of Calculus,
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We can either use logarithmic differentiation, or we can rewrite
(fL‘2 + 3)1n(x) _ (eln(m2+3))ln(l’) _ 6ln(gc2—0—3) In(z)

Following the second approach,
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To use logarithmic differentiation, let y = (22 + 3)"(*), Then
In(y) = In ((z* + 3)ln(w)) = In(z) In(z* + 3)

and
d d 9
. In(y) = %(ln(x +3) In(z))
1 , o1
gy’: x2+32:c In(z) + (x —1—3)5
_ 2zln(z)  In(2? +3)
2243 x
Finally,
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4. (10 pts) We defined the natural log function In : RT™ — R by

ln(x):/ 1alt.
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In(zy) = In(x) + In(y).

Prove that for all z,y € RT,

Hint: We started by differentiating both sides.

We will differentiate each side with respect to x, treating y as a constant (or as a variable
that is independent of z, if you prefer to think about it that way):
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Since In(xy) and In(z) 4+ In(y) have the same derivative on the interval (0, c0), they can only
differ by a constant ¢ according to Corollary 7 in Section 3.2. Hence

In(zy) = In(x) 4+ In(y) + c.

To find the value of ¢, we will substitute x = 1 and use that
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If x =1, then
In(1-y) =In(1) +In(y) + ¢ =In(y) + ¢
This shows ¢ = In(y) — In(y) = 0. Therefore

In(z) = In(z) + In(y)
for all z,y € RT,
5. (10 pts) Extra credit problem. When we defined
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the choice of 1 for the lower bound may have seemed like an arbitrary choice. In fact, there
is good reason to choose 1. Suppose we defined

ln(a:):/ %dt

where a is some positive real number. Show that for
In(ay) = In(x) + In(y)

to be true for all z,y € R™, we must have a = 1.

Suppose
In(zy) = In(z) + In(y)
is true for all z,y € RT. Then for x = y = 1, we get

In(1) =1In(1) + In(1) = In(1) =0.
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We know f(t) = 1/t is a decreasing function on (0, 00) since f’(t) = —1/t* < 0. Hence if
0 <a<1,then 1/t > 1 for all t € [a, 1], and so
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and so a < 1 cannot be true.
If a > 1, then 1/t > 1/a for all t € [1,a], and so
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cannot be 0. We have reached a contradiction again, and so a > 1 cannot be true either.
Hence a must be 1 for In(zy) = In(z) + In(y) to be true for all z,y € RT.

Hence

This contradicts

It follows that



