MCS 122 EXAM 2 SOLUTIONS

1. (10 pts) Let a and b be real numbers whose signs are opposite. That is one of the two
numbers is positive while the other is negative. Show that there exist real numbers o and 3
such that

ae” + be”* = asinh(z + f)
for all x € R.

We will start by expanding a sinh(z + /) in terms of exponential functions:

z+f _ o—x—p B -8
asinh(z + ) =al 26 = a; ex—%e*‘”.

Comparing the coefficients of ¥ and e~ with those in ae® 4+ be™" tells us that we want
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We will now solve these equations for a and 3. First, multiply the two equations together:
e’ aeP a?
ab=——— =——.
2 2 4

Hence

o = —dab = a = +vV—4dab = +2V/—ab.
Note that a and b have opposite signs, so —ab cannot be negative. Since e” is always positive,
a and « must have the same sign. This tells us we must choose a@ = 2v/—ab if a is positive
and o = —2+/—ab if a is negative. Now that we know the value of o, we can substitute it
back into the first equation and solve for §:
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Note that a and a have the same sign, and so the input to the natural log is always positive
here. We will now show that with these values of o and 3, it is indeed true that ae®+be™* =
asinh(z + 3):

asinh(z + ) = — e — e "
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2. (10 pts) Use I'Hopital’s Rule to evaluate

lim (e* + az)%

T—r00



3.

Be sure to fully justify your argument, including why you can use I’'Hopital’s Rule to evaluate
this limit.

First we will rewrite (e* 4+ z)'/* as
(¢ 4 ape = gl _ )

Let us now focus on the exponent. Since x — 0o, we may assume that x is positive. So
e’ +x > €%, and since the natural log is an increasing function, In(e” + x) > In(e*) = =.
Since x gets arbirarily large as x — oo, so does In(e” + x). And of course, the denominator
x goes to oco. Hence we can use ’'Hopital’s Rule:

In(e® + x) . ex};’_l. (e +1) et +1
— = lim —————— = lim .
T—00 T T—00 1 z—o0 et + 1

We have already observed that lim,_,~(e*+x) = co. For much the same reason, lim,_, . (e*+
1) = oo too. So I'Hopital’s Rule applies once again:

et 41 . e’
lim = lim .
z—o00 ¥ 4+  x—oo el + 1

This is still in co/oo form, as we have already shown, and hence we can use ’'Hopital’s Rule
omne more time:

x x
i =lim — = lim 1 =1.
z—o0 €T + 1 z—o00 T T—00
Combining the above yields
. In(e* 4=z
lim Q =1.
T—00 x
Finally,
lim (¢® + )% = lim e = =Mo" 2 —cl=¢
T—00 T—00

because the function f(z) = e* is continuous.

(10 pts) When the town bank is reported robbed overnight, investigators arrive at the scene
at 8:30 AM, and immediately notice that the shattered lock of the vault is very cold. In
fact, they measure its temperature at -191 °C. They quickly realize that the robber broke
the vault’s lock by pouring liquid helium in the lock and hitting the rigid metal with a
30-pound sledgehammer found at the scene. At 9:00 AM, the temperature of the lock is
measured again and it is -156 °C. The thermostat in the bank is set at 24 °C. The boiling
point of helium is -271 °C.

The police’s primary suspect is Jay Walker, former locksmith, small-time crook, and long-
suspected criminal mastermind. Jay is currently in jail for carjacking an icrecream truck
near the bank. He was arrested at 7:15 AM driving that truck with a large, heavy-duty
thermos bottle on the passenger seat filled with pistachio icecream. So Jay’s has alibi after
7:15 AM is rock-solid. Could he have committed the robbery?

Let T'(t) be the temperature of the lock at time ¢, where ¢ is measured in minutes relative
to 8:30 AM. That is 7'(0) = —191 °C. Let y(t) = T'(t) —24 be temperature difference between
the lock and its environment. By Newton’s Law of Cooling, y = k% for some constant k.
We know that the solution of such a differential equation is a function y(t) = yoe**. Here is



what we know:
y(30) = ype®®* — —180 = —215¢30%
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While we calculated a value for k, you will see that it is enough to know e*. Now, we want
to find ¢ such that T'(t) = —271, or y(t) = —271 — 24 = —295. So

¢ t/30
9295 = —215¢kt — —215(eF) = —215 %/ 20 29 _ (36
295 = —215e"" = —215(e”)" = —215 B a5\ B3 :

Simplifying 295/215 and taking natural log of both sides gives
59 t 36 In (23) In(59) — In(43)
In(>:1n<>:>t:30 23 L
43 30 \43 In (39) In(36) — In(43)
So the lock was broken about 53 minutes before 8:30 AM, that is at about 7:37 AM. Jay was
in police custody by then, hence he could not have been the one to break into the vault.
. (10 pts) Let the function f : [-7/2,7/2] — R be f(z) = tan(x) and note that f is both
one-to-one and onto. Define the arctan function to be the inverse of f. Prove that
1
1422

=30 —53.4.

< arctan(z) =
dz B

As usual, we can differentiate both sides of the equation z = tan(arctan(z)):
d

d
P tan(arctan(z))

1 = sec? (arctan(m))d— arctan(z)

T
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— arctan(z) =
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To simplify sec?(arctan(x), we can use the trig identity sec?(z) = 1 + tan?(z):

1 1 !
d t _ — = .
I arc an(x) seCQ(arctan(x) 1+ tanQ(arCtan(Q?D 1422

. Extra credit problem. Let f and g be functions of real numbers and a € R such that
f and g are differentiable and ¢'(x) at every z in some neighborhood (a — §,a + §) except

possibly at a. Suppose lim,_., % exists. We proved in class that if
lim f(z) = lim g(x) = 0,
then
lim M = lim f’(x)
a—=a g(x)  z—a g'(x)
That is ’'Hopital’s Rule holds in the 0/0 indeterminate case.




The goal of this exercise is to prove that if

li_r>n f(z) = o0 and lim g(z) = £o0,

r—a

then it is also true that
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in the somewhat special case when hmx_m / ;é 0.
(a) (4 pts) Suppose f and g satisfy the above hypotheses, including

lim f(z) = +o00 and lim g(z) = +o0.

Tr—a Tr—a
Since f(x) must be either large or very negative for z near a, we may assume that the
d above is sufficiently small that f(z) # 0 for all z in the neighborhood (a — 6, a + 9).
Let F(xz) =1/f(x) and G(z) = 1/g(x). It should be clear that
lim f(z) = £o0o = liin F(z)=0

r—a

lim g(z) = £o00 = ligl G(z)=0.

r—a

Prove that F' and G satisfy the remaining conditions for I'Hopital’s Rule in the 0/0
indeterminate case.

We already know that lim,_,, F(x) = lim,_,, G(z) = 0. Since G(z) = 1/g(x), it is clear
that G(z) # 0 near a. Finally,
1
dz dr f(z) — f2(x)
d d 1 g (x)

20(r) = —— —
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by the chain rule. Since f and g are differentiable near a, the numerators exist. We have
already noted that f(x) # 0 and g(z) # 0 near a, hence the denominators are not 0.
Therefore both F' and G are differentiable near a. So all of the conditions of 'Hopital’s
Rule as satisfied.

(b) (6 pts) Suppose

/
L = lim f,(x) £0
z—a g'(x)
Use 'Hopital’s Rule in the 0/0 indeterminate case to prove
. F(x) 1
:PE}L G(z) L’
and conclude that
LG
—a g(z)

must be true.

This is actually quite tricky. I should have given you a more detailed hint on how to
get started. The idea is similar to how we proved I’'Hépital’s Rule in the 0/0 case, but
we cannot just replace f with a function F' such that

F(m):{f(x) ifx#a

+o0o fxz=a



and ¢ with a similar function G. So we will use F'(z) =1/f(x) and G(z) = 1/g(z). We
have already noted in part (a) that F' and G satisfy the conditions of 'Hopital’s Rule
in the 0/0 case. Except we do not know if lim,_, % exists. To get around these two
difficulties, we will look at the value of

flx) = fy)

9(x) —g(y)
when x and y are both close to a but not equal to a. We may assume without loss of
generality that z is closer to a than y, otherwise we can just switch the two numbers.
Suppose y is close enough to a that f and g are both differentiable and continuous on
the interval [z, y] (or [y, z] if y < x, but for the sake of keeping the notation manageable,
let us keep this as [z, y] with the understanding that x and y may have to switched if
they are in the wrong order). By Cauchy’s Mean Value Theorem, there exists some

c€ (z,y)

Now, note that

[@) ) f@) L5 f@) 1 - f@)F
glx) —gly)  glx) 1—% g(x) 1—g(y)G(x)
Hence
f@)1-fy)F) _ fle
9(z) 1—-g(y)G(z)  g'(c)

g
and it follows that ,
flz) _ f'(e) 1-9(y)G(z)
g(x)  g'c) 1= fy)F(x)
First, notice we can make f’(c)/g’(c) be as close to L as we want by choosing y—and
hence x and c—to be sufficiently close to a. Now, keeping y fixed and letting x approach
a, we see

i 1—g(y)G(x) _ lim,—q (1 — g(y)G(2)) _1- 9(y)lim,_,, G(x)
emal = fy)F(z)  limge (1— f(y)F(z) 11— f(y)limeq F(z)
since G(z) and F(x) both approach 0 as  — a. This means that by choosing x and y

=1

close enough to a, we can make f’(c)/g'(c) as close as we want to L and % as
close to 1 as we want. By doing both, we can make

f(@) _ f(e) 1= 9(y)G(a)

g(x)  g'(c) 1= fY)F(x)
as close to L as we want. Hence

lim @ = L.

z—a g x)

You can make this argument more rigorous by using the § — € definition of the limit. I
will leave the details to you.



