
MCS 122 Exam 2 Solutions

1. (10 pts) Let a and b be real numbers whose signs are opposite. That is one of the two
numbers is positive while the other is negative. Show that there exist real numbers α and β
such that

aex + be−x = α sinh(x+ β)

for all x ∈ R.

We will start by expanding α sinh(x+ β) in terms of exponential functions:

α sinh(x+ β) = α
ex+β − e−x−β

2
=

αeβ

2
ex − αe−β

2
e−x.

Comparing the coefficients of ex and e−x with those in aex + be−x tells us that we want

a =
αeβ

2

b = −αe−β

2

We will now solve these equations for α and β. First, multiply the two equations together:

ab = −αeβ

2
b
αe−β

2
= −α2

4
.

Hence

α2 = −4ab =⇒ α = ±
√
−4ab = ±2

√
−ab.

Note that a and b have opposite signs, so −ab cannot be negative. Since eβ is always positive,
a and α must have the same sign. This tells us we must choose α = 2

√
−ab if a is positive

and α = −2
√
−ab if a is negative. Now that we know the value of α, we can substitute it

back into the first equation and solve for β:

a =
αeβ

2
=⇒ eβ =

2a

α
=⇒ β = ln

(

2a

α

)

.

Note that a and α have the same sign, and so the input to the natural log is always positive
here. We will now show that with these values of α and β, it is indeed true that aex+be−x =
α sinh(x+ β):

α sinh(x+ β) =
αeβ

2
ex − αe−β

2
e−x

=
αeln(

2a
α )

2
ex − αe− ln( 2a

α )

2
e−x

=
α 2a

α

2
ex −

α α
2a

2
e−x

= aex − α2

4a
e−x

= aex − −4ab

4a
e−x since α2 = −4ab

= aex + be−x.

2. (10 pts) Use l’Hôpital’s Rule to evaluate

lim
x→∞

(ex + x)
1
x .



Be sure to fully justify your argument, including why you can use l’Hôpital’s Rule to evaluate
this limit.

First we will rewrite (ex + x)1/x as

(ex + x)1/x = eln[(e
x+x)1/x] = e

ln(ex+x)
x .

Let us now focus on the exponent. Since x → ∞, we may assume that x is positive. So
ex + x ≥ ex, and since the natural log is an increasing function, ln(ex + x) ≥ ln(ex) = x.
Since x gets arbirarily large as x → ∞, so does ln(ex + x). And of course, the denominator
x goes to ∞. Hence we can use l’Hôpital’s Rule:

lim
x→∞

ln(ex + x)

x
= lim

x→∞

1
ex+x (e

x + 1)

1
= lim

x→∞

ex + 1

ex + x
.

We have already observed that limx→∞(ex+x) = ∞. For much the same reason, limx→∞(ex+
1) = ∞ too. So l’Hôpital’s Rule applies once again:

lim
x→∞

ex + 1

ex + x
= lim

x→∞

ex

ex + 1
.

This is still in ∞/∞ form, as we have already shown, and hence we can use l’Hôpital’s Rule
omne more time:

lim
x→∞

ex

ex + 1
= lim

x→∞

ex

ex
= lim

x→∞

1 = 1.

Combining the above yields

lim
x→∞

ln(ex + x)

x
= 1.

Finally,

lim
x→∞

(ex + x)1/x = lim
x→∞

e
ln(ex+x)

x = elimx→∞

ln(ex+x)
x = e1 = e

because the function f(x) = ex is continuous.

3. (10 pts) When the town bank is reported robbed overnight, investigators arrive at the scene
at 8:30 AM, and immediately notice that the shattered lock of the vault is very cold. In
fact, they measure its temperature at -191 ◦C. They quickly realize that the robber broke
the vault’s lock by pouring liquid helium in the lock and hitting the rigid metal with a
30-pound sledgehammer found at the scene. At 9:00 AM, the temperature of the lock is
measured again and it is -156 ◦C. The thermostat in the bank is set at 24 ◦C. The boiling
point of helium is -271 ◦C.
The police’s primary suspect is Jay Walker, former locksmith, small-time crook, and long-
suspected criminal mastermind. Jay is currently in jail for carjacking an icrecream truck
near the bank. He was arrested at 7:15 AM driving that truck with a large, heavy-duty
thermos bottle on the passenger seat filled with pistachio icecream. So Jay’s has alibi after
7:15 AM is rock-solid. Could he have committed the robbery?

Let T (t) be the temperature of the lock at time t, where t is measured in minutes relative
to 8:30 AM. That is T (0) = −191 ◦C. Let y(t) = T (t)−24 be temperature difference between

the lock and its environment. By Newton’s Law of Cooling, y = k dy
dt for some constant k.

We know that the solution of such a differential equation is a function y(t) = y0e
kt. Here is



what we know:

y(0) = (−191− 24)e0 = −215 =⇒ y0 = −215

y(30) = y0e
30k =⇒ −180 = −215e30k

=⇒ e30k =
180

215

=⇒ ek =
30

√

36

43

=⇒ k =
ln(36/43)

30
.

While we calculated a value for k, you will see that it is enough to know ek. Now, we want
to find t such that T (t) = −271, or y(t) = −271− 24 = −295. So

−295 = −215ekt = −215
(

ek
)t

= −215
30

√

36

43

t

=⇒ 295

215
=

(

36

43

)t/30

.

Simplifying 295/215 and taking natural log of both sides gives

ln

(

59

43

)

=
t

30
ln

(

36

43

)

=⇒ t = 30
ln
(

59
43

)

ln
(

36
43

) = 30
ln(59)− ln(43)

ln(36)− ln(43)
≈ −53.4.

So the lock was broken about 53 minutes before 8:30 AM, that is at about 7:37 AM. Jay was
in police custody by then, hence he could not have been the one to break into the vault.

4. (10 pts) Let the function f : [−π/2, π/2] → R be f(x) = tan(x) and note that f is both
one-to-one and onto. Define the arctan function to be the inverse of f . Prove that

d

dx
arctan(x) =

1

1 + x2
.

As usual, we can differentiate both sides of the equation x = tan(arctan(x)):

d

dx
x =

d

dx
tan(arctan(x))

1 = sec2(arctan(x))
d

dx
arctan(x)

d

dx
arctan(x) =

1

sec2(arctan(x))

To simplify sec2(arctan(x), we can use the trig identity sec2(x) = 1 + tan2(x):

d

dx
arctan(x) =

1

sec2(arctan(x)
=

1

1 + tan2(arctan(x))
=

1

1 + x2
.

5. Extra credit problem. Let f and g be functions of real numbers and a ∈ R such that
f and g are differentiable and g′(x) at every x in some neighborhood (a − δ, a + δ) except

possibly at a. Suppose limx→a
f ′(x)
g′(x) exists. We proved in class that if

lim
x→a

f(x) = lim
x→a

g(x) = 0,

then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

That is l’Hôpital’s Rule holds in the 0/0 indeterminate case.



The goal of this exercise is to prove that if

lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞,

then it is also true that

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

in the somewhat special case when limx→a
f ′(x)
g′(x) 6= 0.

(a) (4 pts) Suppose f and g satisfy the above hypotheses, including

lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞.

Since f(x) must be either large or very negative for x near a, we may assume that the
δ above is sufficiently small that f(x) 6= 0 for all x in the neighborhood (a − δ, a + δ).
Let F (x) = 1/f(x) and G(x) = 1/g(x). It should be clear that

lim
x→a

f(x) = ±∞ =⇒ lim
x→a

F (x) = 0

lim
x→a

g(x) = ±∞ =⇒ lim
x→a

G(x) = 0.

Prove that F and G satisfy the remaining conditions for l’Hôpital’s Rule in the 0/0
indeterminate case.

We already know that limx→a F (x) = limx→aG(x) = 0. Since G(x) = 1/g(x), it is clear
that G(x) 6= 0 near a. Finally,

d

dx
F (x) =

d

dx

1

f(x)
= − f ′(x)

f2(x)

d

dx
G(x) =

d

dx

1

g(x)
= − g′(x)

g2(x)

by the chain rule. Since f and g are differentiable near a, the numerators exist. We have
already noted that f(x) 6= 0 and g(x) 6= 0 near a, hence the denominators are not 0.
Therefore both F and G are differentiable near a. So all of the conditions of l’Hôpital’s
Rule as satisfied.

(b) (6 pts) Suppose

L = lim
x→a

f ′(x)

g′(x)
6= 0.

Use l’Hôpital’s Rule in the 0/0 indeterminate case to prove

lim
x→a

F (x)

G(x)
=

1

L
,

and conclude that

lim
x→a

f(x)

g(x)
= L

must be true.

This is actually quite tricky. I should have given you a more detailed hint on how to
get started. The idea is similar to how we proved l’Hôpital’s Rule in the 0/0 case, but
we cannot just replace f with a function F such that

F (x) =

{

f(x) if x 6= a

±∞ if x = a



and g with a similar function G. So we will use F (x) = 1/f(x) and G(x) = 1/g(x). We
have already noted in part (a) that F and G satisfy the conditions of l’Hôpital’s Rule

in the 0/0 case. Except we do not know if limx→a
F (x)
G(x) exists. To get around these two

difficulties, we will look at the value of

f(x)− f(y)

g(x)− g(y)

when x and y are both close to a but not equal to a. We may assume without loss of
generality that x is closer to a than y, otherwise we can just switch the two numbers.
Suppose y is close enough to a that f and g are both differentiable and continuous on
the interval [x, y] (or [y, x] if y < x, but for the sake of keeping the notation manageable,
let us keep this as [x, y] with the understanding that x and y may have to switched if
they are in the wrong order). By Cauchy’s Mean Value Theorem, there exists some
c ∈ (x, y)

f(x)− f(y)

g(x)− g(y)
=

f ′(c)

g′(c)
.

Now, note that

f(x)− f(y)

g(x)− g(y)
=

f(x)

g(x)

1− f(y)
f(x)

1− g(y)
g(x)

=
f(x)

g(x)

1− f(y)F (x)

1− g(y)G(x)
.

Hence
f(x)

g(x)

1− f(y)F (x)

1− g(y)G(x)
=

f ′(c)

g′(c)
and it follows that

f(x)

g(x)
=

f ′(c)

g′(c)

1− g(y)G(x)

1− f(y)F (x)
.

First, notice we can make f ′(c)/g′(c) be as close to L as we want by choosing y–and
hence x and c–to be sufficiently close to a. Now, keeping y fixed and letting x approach
a, we see

lim
x→a

1− g(y)G(x)

1− f(y)F (x)
=

limx→a

(

1− g(y)G(x)
)

limx→a

(

1− f(y)F (x)
) =

1− g(y) limx→aG(x)

1− f(y) limx→a F (x)
= 1

since G(x) and F (x) both approach 0 as x → a. This means that by choosing x and y

close enough to a, we can make f ′(c)/g′(c) as close as we want to L and 1−g(y)G(x)
1−f(y)F (x) as

close to 1 as we want. By doing both, we can make

f(x)

g(x)
=

f ′(c)

g′(c)

1− g(y)G(x)

1− f(y)F (x)
.

as close to L as we want. Hence

lim
x→a

f(x)

g(x)
= L.

You can make this argument more rigorous by using the δ − ǫ definition of the limit. I
will leave the details to you.


