
MCS 122 Final Exam Solutions

1. (10 pts) The function f : R → R defined by

f(x) = x3 + 3 sin(x) + 2 cos(x)

is one-to-one. Find
(

f−1
)′
(2).

First, we will need to know f−1(2) to calculate the derivative of f−1 at 2. Finding a
formula for f−1 in general is hopeless, but it is easy enough to see that

f(0) = 03 + 2 sin(0) + 2 cos(0) = 2,

and so f−1(2) = 0. We can now use the usual formula

(

f−1
)′
(2) =

1

f ′
(

f−1(2)
) =

1

f ′(0)
.

Since f ′(x) = 3x2 + 3 cos(x)− 2 sin(x), we have

f ′(0) = 3 · 02 + 3 cos(0)− 2 sin(0) = 3.

Therefore
(

f−1
)′
(2) = 1/3.

2. (a) (7 pts) Prove the reduction formula
∫

cosn(x) dx =
1

n
cosn−1(x) sin(x) +

n− 1

n

∫

cosn−2(x) dx.

We start with
∫

cosn(x) dx =

∫

cosn−1(x) cos(x)dx.

Let u = cosn−1(x) and dv = cos(x)dx. Then du = (n − 1) cosn−2(x)(− sin(x))dx and
v = sin(x). Hence

∫

cosn(x) dx = cosn−1(x) sin(x)−
∫

(n− 1) cosn−2(x)(− sin2(x)) dx

= cosn−1(x) sin(x) + (n− 1)

∫

cosn−2(x) sin2(x) dx

= cosn−1(x) sin(x) + (n− 1)

∫

cosn−2(x)(1− cos2(x)) dx

= cosn−1(x) sin(x) + (n− 1)

∫

cosn−2(x)− cosn(x) dx

= cosn−1(x) sin(x) + (n− 1)

∫

cosn−2(x) dx− (n− 1)

∫

cosn(x) dx

Let us add (n− 1)
∫

cosn(x) dx to both sides:

n

∫

cosn(x) dx = sin(x) cosn−1(x) + (n− 1)

∫

cosn−2(x) dx.

Dividing by n, we find
∫

cosn(x) dx =
cosn−1(x) sin(x)

n
+

n− 1

n

∫

cosn−2(x) dx.



(b) (3 pts) Use the formula in part (a) to evaluate
∫

cos2(x) dx.

We just need to use the formula with n = 2:
∫

cos2(x) dx =
cos(x) sin(x)

2
+

1

2

∫

dx =
cos(x) sin(x)

2
+

x

2
+ c.

3. (10 pts) Suppose the improper integral
∫∞
−∞ f(x) dx is convergent. Let a and b be real

numbers. Show that
∫

a

−∞
f(x) dx+

∫ ∞

a

f(x) dx =

∫

b

−∞
f(x) dx+

∫ ∞

b

f(x) dx.

Hint: We know the property
∫

b

a
f(x) dx =

∫

c

a
f(x) dx +

∫

b

c
f(x) dx if a, b, and c are real

numbers.

First, note that since
∫∞
−∞ f(x) dx is convergent, the following four improper integrals must

all be convergent:

∫

a

−∞
f(x) dx,

∫ ∞

a

f(x) dx,

∫

b

−∞
f(x) dx,

∫ ∞

b

f(x) dx.

To make the rest of the argument easier to visualize, let us suppose a ≤ b. If a > b, just
switch a and b. We do not actually need to know a ≤ b for what we are about to do, but
it is easier to visualize what is going on in terms of areas under graphs if we assume a ≤ b.
First,

∫

b

−∞
f(x) dx = lim

t→−∞

∫

b

t

f(x) dx

= lim
t→−∞

(
∫

a

t

f(x) dx+

∫

b

a

f(x) dx

)

= lim
t→−∞

∫

a

t

f(x) dx+ lim
t→−∞

∫

b

a

f(x) dx.

Note that
∫

b

a
f(x) dx does not depend on t at all, so its limit as t → −∞ is just

∫

b

a
f(x) dx.

Hence
∫

b

−∞
f(x) dx = lim

t→−∞

∫

a

t

f(x) dx+

∫

b

a

f(x) dx =

∫

a

−∞
f(x)dx+

∫

b

a

f(x) dx.

By an analogous argument

∫ ∞

a

f(x) dx =

∫

b

a

f(x) dx+

∫ ∞

b

f(x) dx.

Therefore
∫

a

−∞
f(x) dx+

∫ ∞

a

f(x) dx =

∫

a

−∞
f(x) dx+

∫

b

a

f(x) dx+

∫ ∞

b

f(x) dx

=

∫

b

−∞
f(x) dx+

∫ ∞

b

f(x) dx.



This is easy to visualize in terms of areas:

x

y

4. (10 pts) Use the method of partial fractions to evaluate the indefinite integral
∫

5x4 − 2x3 + 40x2 − 7x+ 80

x(x2 + 4)2
dx.

We will let

5x4 − 2x3 + 40x2 − 7x+ 80

x(x2 + 4)2
=

A

x
+

Bx+ C

x2 + 4
+

Dx+ E

(x2 + 4)2

=
A(x2 + 4)2 + (Bx+ C)x(x2 + 4) + (Dx+ E)x

x(x2 + 4)2
.

Since the denominators are the same, the numerators must be equal:

5x4 − 2x3 + 40x2 − 7x+ 80 = A(x2 + 4)2 + (Bx+ C)x(x2 + 4) + (Dx+ E)x.

If x = 0, we get 80 = 16A, and so A = 5. To find the values of the remaining parameters,
we can multiply out on the right-hand side:

5x4 − 2x3 + 40x2 − 7x+ 80 = 5(x2 + 4)2 + (Bx+ C)x(x2 + 4) + (Dx+ E)x

= 5x4 + 40x2 + 80 +Bx4 + 4Bx2 + Cx3 + 4Cx+Dx2 + Ex

= (5 +B)x4 + Cx3 + (40 + 4B +D)x2 + (4C + E)x+ 80.

Setting corresponding coefficients equal to each other gives

5 +B = 5 =⇒ B = 0

C = −2

40 + 4B +D = 40 =⇒ D = 40− (40 + 4B) = 0

4C + E = −7 =⇒ E = −7− 4C = 1.

Let us check that our calculation so far is correct, so we do not spend time and effort
integrating the wrong function:

5

x
− 2

x2 + 4
+

1

(x2 + 4)2
=

5(x2 + 4)2 − 2x(x2 + 4) + x

x(x2 + 4)2

=
5x4 + 40x2 + 80− 2x3 − 8x+ x

x(x2 + 4)2

=
5x4 − 2x3 + 40x2 − 7x+ 80

x(x2 + 4)2
.



We can now do the integration:
∫

5x4 − 2x3 + 40x2 − 7x+ 80

x(x2 + 4)2
dx =

∫

5

x
− 2

x2 + 4
+

1

(x2 + 4)2
dx

= 5 ln |x| − 2

∫

1

x2 + 4
dx+

∫

1

(x2 + 4)2
dx.

To evaluate the second integral, we can substitute x = 2u. So dx = 2du and u = x/2. Then
∫

1

x2 + 4
dx =

∫

2

4u2 + 4
du =

1

2

∫

1

u2 + 1
du =

1

2
arctan(u) + c =

arctan(x/2)

2
+ c.

For the third integral, we will substitute x = 2 tan(u). So dx = 2 sec2(u)du. Hence
∫

1

(x2 + 4)2
dx =

∫

2 sec2(u)

(4 tan2(u) + 4)2
du

=
2

16

∫

sec2(u)

(tan2(u) + 1)2
du

=
1

8

∫

sec2(u)
(

sec2(u)
)2 du

=
1

8

∫

1

sec2(u)
du

=
1

8

∫

cos2(u) du

=
1

8

(

cos(u) sin(u)

2
+

u

2

)

+ c.

by using the result of problem 2b. We can now subsitute x back into this result. Since
x = 2 tan(u), we have u = arctan(x/2). Here is a way to express sin(u) cos(u) in terms of x
in simple terms:

sin(u) cos(u) =
sin(u)

cos(u)
cos2(u)

=
tan(u)

sec2(u)

=
tan(u)

tan2(u) + 1

=
x

2
(

x

2

)2
+ 1

=
2x

x2 + 4
.

Hence
∫

1

(x2 + 4)2
dx =

1

8

(

x

x2 + 4
+

arctan(x/2)

2

)

+ c =
1

8

x

x2 + 4
+

arctan(x/2)

16
+ c.

Putting the pieces together:
∫

5x4 − 2x3 + 40x2 − 7x+ 80

x(x2 + 4)2
dx = 5 ln |x| − arctan

(x

2

)

+
1

8

x

x2 + 4
+

arctan(x/2)

16
+ c

= 5 ln |x| − 15

16
arctan

(x

2

)

+
1

8

x

x2 + 4
+ c.



5.

r

y
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x

B
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(10 pts) A right circular cone is a cone whose base is a circle and the line segment (called
the axis) that connects the vertex of the cone and the center of the base is perpendicular
to the base. Use cylindrical shells to set up an integral for the volume of a right circular
cone of radius r and h, and find the volume by evaluating the integral.

Let the x-axis lie on one of the radii of the circular base and the y-axis along the axis of
the cone. So the origin is at the center of the base. The cross-section of such a cone in the xy-
plane is an isosceles triangle with its three vertices at A = (−r, 0), B = (r, 0), and C = (0, h).
So line BC has slope −h/r and y-intercept h. Hence its equation is y = (−h/r)x+h. To find
the volume, we will use cylindrical shells whose axis of rotation is the y-axis. Let x be the
inner radius of such a shell and ∆x its thickness. The height of the shell is y = h− (h/r)x.
Using the usual formula, the volume is

∫

r

0
2πx

(

h− h

r
x2

)

dx = 2π

∫

r

0
hx− h

r
x2 dx

= 2πh

[

x2

2
− x3

3r

]r

0

= 2πh

(

r2

2
− r3

3r

)

= 2πhr2
(

1

2
− 1

3

)

=
πhr2

3
.

6. (10 pts) Find the limit of the sequence an = n

√
n2 + 3.

Hint: Consider the limit of the corresponding function f(x) = x

√
x2 + 3 as x → ∞.

By Theorem 3 in Section 8.1,

lim
n→∞

n

√

n2 + 3 = lim
x→∞

x

√

x2 + 3

if the limit on the right-hand side exists. We can use l’Hôpital’s Rule to evaluate it.

lim
x→∞

x

√

x2 + 3 = lim
x→∞

eln(
x
√
x2+3)

= lim
x→∞

e
ln(x2+3)

x

Let us focus our attention on the limit of the exponent. As x → ∞, it is clear that
x2 + 3 → ∞, and hence ln(x2 + 3) → ∞. So the limit of the indeterminate form ∞/∞, and
we can use l’Hôpital’s Rule:

lim
x→∞

ln(x2 + 3)

x
= lim

x→∞

1
x2+3

2x

1
= lim

x→∞

2x

x2 + 3
.

It is clear that this is again of the indeterminate form ∞/∞, so we could use l’Hôpital’s rule
again, or we can use the more elementary method of dividing both the numerator and the
denominator by x2 and using the limit laws:

lim
x→∞

2x

x2 + 3
= lim

x→∞

2x
x2

x2+3
x2

= lim
x→∞

2
x

1 + 3
x2

=
2 limx→∞

1
x

limx→∞ 1 + 3 limx→∞
1
x2

=
0

1
= 0.

Since the function g(x) = ex is continuous at every real number, and in particular at 0,

lim
x→∞

eln(
x
√
x2+3) = elimx→∞ ln( x

√
x2+3) = e0 = 1.



We can now conclude

lim
n→∞

n

√

n2 + 3 = lim
x→∞

x

√

x2 + 3 = 1.

7. (5 pts each) Extra credit problem. Define the sequence an recursively by a1 = 1 and
an+1 =

√
1 + an for n ∈ Z

+. It is easy enough to see that this is the sequence

√
1,

√

1 +
√
1,

√

1 +

√

1 +
√
1,

√

1 +

√

1 +

√

1 +
√
1, . . .

The purpose of this exercise is to show that this sequence is convergent and its limit is the

golden ratio φ = 1+
√
5

2 . I will break this down into a few steps for you.

Before we begin, note that φ is one of the two roots of the quadratic polynomial x2−x−1.

The other root is the negative number 1−
√
5

2 .
(a) It should be clear that an is positive for all n ∈ Z

+. Prove that if an < φ, then an+1 < φ.

Hint: Since the graph of x2 − x − 1 is an upright parabola, if 1−
√
5

2 < x < 1+
√
5

2 , then

x2 − x− 1 < 0.

Suppose an < φ. Since an is clearly positive, we know

1−
√
5

2
< x <

1 +
√
5

2
.

So an is between the roots of the quadratic function f(x) = x2 − x− 1, whose graph is
an upright parabola. Hence

0 > f(an) = a2n − an − 1 =⇒ a2n < an + 1 < φ+ 1.

But φ is one of the roots of x2 − x− 1, and so

0 = φ2 − φ− 1 =⇒ φ+ 1 = φ2.

Hence a2n < an + 1 < φ+ 1 = φ2. Since the function g(x) =
√
x is increasing on [0,∞),

and an and φ are both positive, we get

a2n < φ2 =⇒
√

a2n <
√

φ2 =⇒ an < φ.

(b) It follows from part (a), that since a1 = 1 < φ, we also know a2 < φ, and so a3 < φ, and
so on. That is {an} is bounded above by φ. Let us show that it is also an increasing
sequence. Use that 0 < an < φ to show that an+1 > an. Conclude that {an} must be
convergent.

In part (a), we actually showed that if an < φ, then a2n < an + 1. Notice that an + 1 =
a2
n+1. By part (a), We know an < φ is true for all n ∈ Z

+. Therefore a2n < a2
n+1 is also

true for all n ∈ Z
+. Remember that the square root function is increasing on [0,∞), so

we can take square roots of both sides:

a2n < a2n+1 =⇒
√

a2n <
√

a2
n+1 =⇒ an < an+1.

This is true for all n ∈ Z
+, hence the sequence {an} is increasing. It is also bounded

above by φ. It follows by the Monotonic Sequence Theorem, that it must be convergent.

(c) Now that we know {an} is convergent, let L be its limit. That is

lim
n→∞

an = L.

It should be clear that
lim
n→∞

an+1 = L



too. Now use that an+1 =
√
1 + an to prove that L =

√
1 + L. Conclude that L must

be a root of the polynomial x2 − x− 1, and since L is clearly positive, L = φ.

By using the various limit laws for sequences, we have

lim
n→∞

an+1 = lim
n→∞

√
1 + an =

√

lim
n→∞

(1 + an) =
√

lim
n→∞

1 + lim
n→∞

an =
√
1 + L.

But we also know limn→∞ an+1 = L. So

L = lim
n→∞

an+1 =
√
1 + L =⇒ L2 = 1 + L.

That is L is a root of the polynomial x2 − x− 1. As we have observed, that polynomial
has two roots: a negative root and a positive root. Since L is the limit of a sequence
of positive numbers, L cannot be negative. Therefore L must be the positive root of
x2 − x− 1. That root is the golden ratio φ. Hence

lim
n→∞

an = φ.

Notice how neat this result is! By slightly abusing notation, we can say

φ =

√

1 +

√

1 +
√
1 + · · ·.


