
MCS 122 Exam 1

1. (10 pts) Use a right-hand sum with a uniform partition to express the area under the curve
y = x3 from 0 to 1 as a limit, then evaluate the limit.

Some of the following summation formulas may be useful:

n
∑

i=1

i =
n(n+ 1)

2
,

n
∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

n
∑

i=1

i3 =
n2(n+ 1)2

4
.

Let f(x) = x3. If we divide the interval [0, 1] into n uniform subintervals, each of those
will have width ∆x = 1/n. The subintervals are

[
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n

]

,
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n
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n
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n
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.

Since we are using the right endpoints of these intervals, the sample points are x∗i = i/n.
Hence the Riemann sum is

Rn =
n
∑

i=1

f(x∗i )∆x =
n
∑

i=1

(

i

n

)3 1

n
=

n
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i3

n4
=
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i=1 i

3

n4
.

We can now use
∑n

i=1 i
3 = n2(n+1)2

4 in the numerator:

Rn =
n2(n+1)2

4
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4n2
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4n2
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1

4
+

1
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1
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.

Taking the limit as n → ∞,

lim
n→∞

Rn = lim
n→∞
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1

4
+

1
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+

1

4n2

)
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1

4
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n→∞

1

2n
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n→∞

1

4n2

=
1

4
+

1

2
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1

n
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1

4
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1
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=
1

4

by using limn→∞
1
n = 0 and limn→∞

1
n2 = 0. Hence the area is

∫ 1

0
x3 dx =

1

4
.
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(10 pts) A (right circular) cone-shaped paper drinking cup is to be made to hold 27 cm3 of
water. Find the height and radius of the cup that will use the smallest amount of paper.
Make sure you fully justify your work, including how you know that what you found is an
absolute minimum.

Hint: The volume of a right circular cone of radius r and height h is V = πr2h
3 . Since we

are constructing a drinking cup, we do not need the base of the cone. Its side can be made
of a circular wedge like the one on the left. The radius of the wedge is the same as the slant
height of the cone: R =

√
r2 + h2, and the central angle is θ = 2πr

R . The area of such a

wedge is given by A = θR2

2 . You want to find the values of r and h that minimize A.

Unforunately, there was a mistake in the formula V = πr3h
3 I gave you for the volume of

a cone. The correct formula is V = πr2h
3 . I apologize for this. Fortunately, this makes no

difference in how the problem can be solved: the same method of solution works in both
cases, only you get somewhat different numbers for the radius and height that minimize the
volume. Obviously, I accepted your solution if you used the wrong formula.

Here is the solution using the correct formula first. Since the volume of the cone is supposed
to be 27 cm3, we know

27 =
πr2h

3
=⇒ h =

81

πr2
.

We do not need paper for the base of the cone, only for the side, which can be made of the
circular wedge on the left, whose area is

A = θR2 =
2πr

R
R2 = 2πrR = 2πr

√

r2 + h2 = 2πr

√

r2 +
6561

π2r4
=

√

π2r4 +
6561

r2
.

The area A is now in terms of only the variable r, and so we can use single-variable calculus
to find its minimum. Note that since A ≥ 0, the area A is at its minimum when

A2 = π2r4 +
6561

r2

is at its mimimum. So let

f(r) = π2r4 +
6561

r2
.

We need to find the absolute minimum of f(r) over r ∈ (0,∞). We will start by looking for
critical points. The derivative

f ′(r) = 4π2r3 − 2
6561

r3
= 4π2r3 −

13122

r3

exists for all r ∈ (0,∞). So the only kind of critical point is where f ′(r) = 0.

4π2r3 −
13122

r3
= 0

4π2r3 =
13122

r3

r6 =
6561

2π2

r =
6

√

38

2π2
= 3

3
√
3

6
√
2 3
√
π
≈ 2.63 cm.



We will show that this critical point is in fact the absolute minimum of f(r). To simplify

the notation, let k = 3
3
√
3

6
√
2 3
√
π
. First, suppose r > k. Then r3 > k3, and so

r3 > k3 =⇒ 4π2r3 > 4π2k3

r3 > k3 =⇒
13122

r3
<

13122

k3
=⇒ −

13122

r3
> −

13122

k3
.

Combining these inequalities, we find

f ′(r) = 4π2r3 −
13122

r3
> 4π2k3 −

13122

k3
= 0.

So f is an increasing function on (k,∞), which tells us f(r) > f(k) for r ∈ (k,∞).
Similarly, if 0 < r < k. Then r3 < k3, and so

r3 < k3 =⇒ 4π2r3 < 4π2k3

r3 < k3 =⇒
13122

r3
>

13122

k3
=⇒ −

13122

r3
< −

13122

k3
.

Combining these inequalities, we find

f ′(r) = 4π2r3 −
13122

r3
< 4π2k3 −

13122

k3
= 0.

So f is a decreasing function on (0, k), which tells us f(r) < f(k) for r ∈ (0, k). Hence
k is an absolute minimum of f by the First Derivative Test for Absolute Extrema. The
corresponding height of the cone is

h =
81

πk2
= 3

3

√

6

π
≈ 3.72 cm.

So to make the cup out of the smallest amount of paper, we would want its radius to be

r = 3
3
√
3

6
√
2 3
√
π
≈ 2.63 cm and its height to be h = 3 3

√

6
π ≈ 3.72 cm.

Here is the same kind of calculation with the wrong formula V = πr3h
3 . Since the volume

of the cone is supposed to be 27 cm3, we know

27 =
πr3h

3
=⇒ h =

81

πr3
.

We do not need paper for the base of the cone, only for the side, which can be made of the
circular wedge on the left, whose area is

A = θR2 =
2πr

R
R2 = 2πrR = 2πr

√

r2 + h2 = 2πr

√

r2 +
6561

π2r6
=

√

π2r4 +
6561

r4
.

The area A is now in terms of only the variable r, and so we can use single-variable calculus
to find its minimum. Note that since A ≥ 0, the area A is at its minimum when

A2 = π2r4 +
6561

r4

is at its mimimum. So let

f(r) = π2r4 +
6561

r4
.

We need to find the absolute minimum of f(r) over r ∈ (0,∞). We will start by looking for
critical points. The derivative

f ′(r) = 4π2r3 − 4
6561

r5
= 4π2r3 −

26244

r5



exists for all r ∈ (0,∞). So the only kind of critical point is where f ′(r) = 0.

4π2r3 −
26244

r5
= 0

4π2r3 =
26244

r5

r8 =
6561

π2

r =
8

√

38

π2
=

3
4
√
π
≈ 2.28 cm.

We will show that this critical point is in fact the absolute minimum of f(r). To simplify
the notation, let k = 3

4
√
π
. First, suppose r > k. Combining these inequalities, we find

f ′(r) = 4π2r3 −
26244

r5
> 4π2k3 −

26244

k5
= 0.

So f is an increasing function on (k,∞), which tells us f(r) > f(k) for r ∈ (k,∞).
Similarly, if 0 < r < k. Then r3 < k3 and r5 < k5, and so

r < k =⇒ r3 < k3 =⇒ 4π2r3 < 4π2k3

r < k =⇒ r5 < k5 =⇒
26244

r5
>

26244

k5
=⇒ −

26244

r5
< −

26244

k5
.

Combining these inequalities, we find

f ′(r) = 4π2r3 −
26244

r5
< 4π2k3 −

26244

k5
= 0.

So f is a decreasing function on (0, k), which tells us f(r) < f(k) for r ∈ (0, k). Hence
k is an absolute minimum of f by the First Derivative Test for Absolute Extrema. The
corresponding height of the cone is

h =
81

πk3
=

3
4
√
π
≈ 3.99 cm.

So to make the cup out of the smallest amount of paper, we would want its radius to be
r = 3

4
√
π
≈ 2.28 cm and its height to be h = 3

4
√
π
≈ 2.25 cm.

3. (5 pts each)
(a) Find the derivative

d

dx

∫ −1

x2

1

5 + t3
dt.

First, let

f(x) =

∫ x

−1

1

5 + t3
dt.

By the Fundamental Theorem of Calculus,

f ′(x) =
1

5 + x3
.



Hence

d

dx

∫ −1

x2

1

5 + t3
dt =

d

dx

(

−
∫ x2

−1

1

5 + t3
dt

)

= −
d

dx
f(x2)

= −f ′(x2)
d

dx
x2 by the chain rule

= −
2x

5 + x6
.

(b) Find the indefinite integral
∫

sec2(x) 3
√

1 + tan(x) dx.

We can evaluate this integral by substituting u = 1 + tan(x). Then du = sec2(x) dx.
Hence
∫

sec2(x) 3
√

1 + tan(x) dx =

∫

3
√
u du =

u4/3

4/3
+ c =

3

4

(

1 + tan(x)
)4/3

+ c.

4. (10 pts) We defined the natural log function ln : R+ → R by

ln(x) =

∫ x

1

1

t
dt.

Use this definition to prove that for all x, y ∈ R
+,

ln(xy) = ln(x) + ln(y).

Hint: In class, we started by differentiating both sides.

We will differentiate each side with respect to x, treating y as a constant (or as a variable
that is independent of x, if you prefer to think about it that way):

d

dx
ln(xy) =

1

xy

d

dx
(xy) =

1

xy
y =

1

x

and
d

dx

(

ln(x) + ln(y)
)

=
1

x
+ 0 =

1

x
.

Since ln(xy) and ln(x)+ ln(y) have the same derivative on the interval (0,∞), they can only
differ by a constant c according to Corollary 7 in Section 3.2. Hence

ln(xy) = ln(x) + ln(y) + c.

To find the value of c, we will substitute x = 1 and use that

ln(1) =

∫ 1

1

1

t
dt = 0.

If x = 1, then
ln(1 · y) = ln(1) + ln(y) + c = ln(y) + c.

This shows c = ln(y)− ln(y) = 0. Therefore

ln(xy) = ln(x) + ln(y)

for all x, y ∈ R
+,



5. (5 pts each) Extra credit problem.

(a) Let f : A → B and g : B → C be functions where A, B, and C are subsets of the real
numbers. Show that if f and g are both one-to-one, then their composition g ◦ f is also
one-to-one.

Suppose f and g are one-to-one. Then we know that if x1, x2 ∈ A such that f(x1) =
f(x2), then x1 = x2, and if y1, y2 ∈ A such that g(y1) = g(y2), then y1 = y2. Let
x1, x2 ∈ A. Suppose g ◦ f(x1) = g ◦ f(x2). That is g(f(x1)) = g(f(x2)). Then
f(x1) = f(x2) because g is one-to-one. It follows that x1 = x2. We have shown that if
g ◦ f(x1) = g ◦ f(x2), then x1 = x2. Therefore g ◦ f is one-to-one.

(b) Find an example to show that if f and g are one-to-one functions of real numbers, their
product fg need not be one-to-one.

Let f : R → R be f(x) = x. It is clear that if x1, x2 ∈ R are such that f(x1) = f(x2),
then x1 = x2. So f is one-to-one. Now, let g = f . So g is also one-to-one. Then the
function fg : R → R is fg(x) = f(x)g(x) = x2, which is not a one-to-one function. For
example, fg(−2) = (−2)2 = 22 = fg(2).


