
MCS 122 Exam 2 Solutions

1. (10 pts) Use l’Hospital’s rule to evaluate the limit

lim
x→0

cos(mx)− cos(nx)

x2
.

Be sure to explain why using l’Hospital’s rule is justified.

By continuity of the cosine at x = 0,

lim
x→0

(
cos(mx)− cos(nx)

)
= cos(0)− cos(0) = 0.

Also, it is clear that

lim
x→0

x2 = 0.

So the limit in this problem is of the form 0/0. Both the numerator and the denominator
are differentiable functions and d

dx
x2 = 2x 6= 0 for value of x near 0. By l’Hospital’s rule,

lim
x→0

cos(mx)− cos(nx)

x2
= lim

x→0

−m sin(mx) + n sin(nx)

2x
.

This is still of the form 0/0 form since

lim
x→0

(
n sin(nx)−m sin(mx)

)
= n sin(0)−m sin(0) = 0

and

lim
x→0

(2x) = 0.

by continuity of the sine function and of the polynomial 2x. Both the numerator and de-
nominator are differentiabkle (we are about to differentiate them) and d

dx
(2x) = 2 is not 0

for x near 0. By l’Hospital’s rule,

lim
x→0

n sin(nx)−m sin(mx)

2x
= lim

x→0

n2 cos(nx)−m2 cos(mx)

2

=
n2 cos(0)−m2 cos(0)

2

=
n2 −m2

2
,

where we evaluated the last limit using the continuity of the cosine function. Therefore

lim
x→0

cos(mx)− cos(nx)

x2
=

n2 −m2

2
.

2. (10 pts) In a murder investigation, the temperature of the corpse was 32.5◦C at 1:30 PM
and 30.3◦C an hour later. Normal body temperature is 37.0◦C and the temperature of the
surroundings was 20.0◦C. When did the murder take place?

Hint: Remember that Newton’s Law of Cooling says that if T (t) is the temperature of an
object at time t in an environment of constant temperature Ts, then

dT
dt

= k(T − Ts) for
some constant of proportionality k.

Let y(t) = T (t)− Ts. Then y′(t) = T ′(t). By Newton’s Law of Cooling,

dy

dt
=

dT

dt
= k(T − Ts) = ky.



We know that the solution of the differential equation dy
dt

= ky is an exponential function of

the form y(t) = y0e
kt. It follows that

T (t) = y(t) + Ts = y0e
kt + Ts

where y0 = y(0) = T (0)− Ts is the initial temperature difference between the body and the
environment at time t = 0. It is up to us what time we choose to be that initial time t = 0.
I will choose t = 0 to be the time the victim was killed and will measure t in hours. So in
our case, y0 = 37− 20 = 17◦C. Therefore

T (t) = 17ekt + 20.

Let us say the victim died x hours before 1:30 PM. Then t = x at 1:30, and

32.5 = T (x) = 17ekx + 20 =⇒ 17ekx = 12.5.

At 2:30

30.3 = T (x+ 1) = 17ekx+k + 20 = 17ekx+k + 20 =⇒ 17ekx+k = 10.3.

Let us divide the second equation by the first:

17ekx+k

17ekx
=

10.3

12.5
=⇒ ek =

10.3

12.5
.

Hence

T (t) = 17ekt + 20 = 17
(
ek
)t

+ 20 = 17

(
10.3

12.5

)t

+ 20.

Substituting this back into the first equation gives

12.5 = 17ekx = 17
(
ek
)x

= 17

(
10.3

12.5

)x

=⇒ 12.5

17
=

(
10.3

12.5

)x

.

We can find x by taking the natural log of both sides:

ln

(
12.5

17

)

= ln

(
10.3

12.5

)x

= x ln

(
10.3

12.5

)

.

Hence

x =
ln(12.5/17)

ln(10.3/12.5)
≈ 1.6.

So the victim died about an hour and 36 minutes before 1:30 PM, that is around 11:54 AM.

3. (10 pts) Let the function f : R → R be f(x) = sinh(x) and note that f is both one-to-one
and onto. Define the arcsinh function to be the inverse of f . Prove that

d

dx
arcsinh(x) =

1√
1 + x2

.

As usual, we can differentiate both sides of the equation x = sinh(arcsinh(x)):

d

dx
x =

d

dx
sinh(arcsinh(x))

1 = cosh(arcsinh(x))
d

dx
arcsinh(x)

d

dx
arcsinh(x) =

1

cosh(arcsinh(x))

To simplify cosh(arcsinh(x), we can use the trig identity cosh2(x)− sinh2(x) = 1. First, note
that

cosh2(x) = 1 + sinh2(x) =⇒ cosh(x) = ±
√

1 + sinh2(x).



Since cosh(x) = ex+e−x

2 and ex and e−x are both positive for any value of x, we know
cosh(x) > 0. Hence we can discard the negative square root:

cosh(x) =

√

1 + sinh2(x).

It follows that

cosh(arcsinh(x) =

√

1 + sinh2(arcsinh(x)) =
√

1 + x2.

Therefore
d

dx
arcsinh(x) =

1

cosh(arcsinh(x))
=

1√
1 + x2

.

4. (10 pts) Use integration by parts to evaluate
∫

cos2(x) dx.

Hint: It may be wise to check your answer by differentiating it.

Let ∫

cos2(x) dx =

∫

cos(x)
︸ ︷︷ ︸

u

cos(x) dx
︸ ︷︷ ︸

dv

.

So du = − sin(x) dx and v = sin(x). Hence
∫

cos(x) cos(x) dx = sin(x) cos(x)−
∫

sin(x)
(
− sin(x)

)
dx

= sin(x) cos(x) +

∫

sin2(x) dx

= sin(x) cos(x) +

∫

1− cos2(x) dx

= sin(x) cos(x) +

∫

1 dx−
∫

cos2(x) dx

= sin(x) cos(x) + x+ c−
∫

cos2(x) dx

Hence

2

∫

cos(x) cos(x) dx = sin(x) cos(x) + x+ c.

Dividing by 2 gives
∫

cos(x) cos(x) dx =
sin(x) cos(x) + x+ c

2
,

or since c is an arbitrary constant anyway
∫

cos(x) cos(x) dx =
sin(x) cos(x) + x

2
+ c.

It is easy to check the answer:

d

dx

sin(x) cos(x) + x

2
=

cos(x) cos(x)− sin(x) sin(x) + 1

2
=

cos2(x)

cos2(x)
︷ ︸︸ ︷

− sin2(x) + 1

2
= cos2(x).



5. (10 pts) Extra credit problem. You have certainly seen functions that are continuous,
but not differentiable at a point. A classic example is f(x) = |x| at x = 0. It is easy to see
that the absolute value function has derivative f ′(x) = 1 for all x > 0 and f ′(x) = −1 for all
x < 0. So this function has a legitimate derivative for every value of x near 0, just not at 0.

Now, suppose f is some function of real numbers and a ∈ R such that f is continuous
at a, and f ′(x) exists for all values of x near a (but not necessarily at a). Show that if
L = limx→a f

′(x) also exists, then f must be differentiable at a as well, and in fact f ′(a) = L.
So f ′ is also a continuous function at a.

Hint: You can do this by using the definition of the derivative for f ′(a) and l’Hospital’s
rule. But make sure you verify that the conditions of l’Hospital’s rule are met.

By definition of the derivative,

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

Since f is continuous at a,

lim
x→a

(
f(x)− f(a)

)
= lim

x→a
f(x)− lim

x→a
f(a) = f(a)− f(a) = 0.

It is also clear that
lim
x→a

(x− a) = a− a = 0.

Since f is differentiable at every x near a, so is f(x)− f(a):

d

dx

(
f(x)− f(a)

)
= f ′(x).

Also
d

dx
(x− a) = 1,

which is not 0 for any valoue of x near a. Hence we can use l’Hospital’s rule to find the limit
of the difference quotient:

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a

f ′(x)

1
= L.

This shows that f ′(a) exists, and so f is differentiable at a. In fact,

f ′(a) = L = lim
x→a

f ′(x),

which shows that f ′ is continuous at a.


