
MCS 150 Exam 2 Solutions

1. (10 pts) The sequence {cn}
∞
n=1 is defined recursively as

c1 = 3

c2 = −9

cn = 7cn−1 − 10cn−2 for n ≥ 3.

Use (strong) induction to show that cn = 4 · 2n − 5n for all integers n ≥ 1.

We start with the base cases. If n = 1, then

4 · 2n − 5n = 4 · 21 − 51 = 3 = c1.

If n = 2, then
4 · 2n − 5n = 4 · 22 − 52 = −9 = c2.

So the identity indeed holds when n = 1 and n = 2.
Let us suppose that for some n ∈ Z

≥2, ck = 4(2k) − 5k for k = 1, 2, . . . , n. We now want
to prove that cn+1 = 4(2)n+1 − 5n+1.

cn+1 = 7cn − 10cn−1 by the recurrence

= 7(4 · 2n − 5n)− 10(4 · 2n−1 − 5n−1) by the inductive hypothesis

= 28 · 2n − 7 · 5n − 40 · 2n−1 + 10 · 5n−1

= 14 · 2n+1 − 7 · 5n − 10 · 2n+1 + 2 · 5n

= 4 · 2n+1 − 5 · 5n

= 4 · 2n+1 − 5n+1

which is what we wanted to prove. It follows by induction that cn = 4 ·2n−5n for all n ∈ Z
+.

2. (5 pts each)
(a) Give an example of sets A, B and C such that A ∈ B, and B ∈ C, and A 6∈ C.

Many examples are possible of course. Here is one,

A = {1}

B = {A} = {{1}}

C = {B} = {{{1}}}

It is clear that A ∈ B and B ∈ C because that is how we constructed B and C. And
A 6∈ C because the only element in C is {{1}} which is not equal to A.

(b) Evaluate P(P({a, b})).

First,
P({a, b}) = {∅, {a}, {b}, {a, b}}.

Now

P(P({a, b})) = P({∅, {a}, {b}, {a, b}})

= {∅, {∅}, {{a}}, {{b}}, {{a, b}}, {∅, {a}}, {∅, {b}},

{∅, {a, b}}, {{a}, {b}}, {{a}, {a, b}}, {{b}, {a, b}},

{{a}, {∅, {a}, {b}}, {∅, {a}, {a, b}}, {∅, {b}, {a, b}},

{{a}, {b}, {a, b}}, {∅, {a}, {b}, {a, b}}}



3. (10 pts) Define the Fibonacci numbers {Fn}
∞
n=0 by F0 = 0, F1 = 1 and the recurrence relation

Fn = Fn−1 + Fn−2 for n ∈ Z
≥2.

Prove by induction on n that

F1F2 + F2F3 + F3F4 + · · ·+ F2n−1F2n = F 2
2n

for every n ∈ Z
+.

We start with the base case. If n = 1, then

F1F2 = 1 · 1 = 1 = F 2
2 .

For the inductive hypothesis, assume

F1F2 + F2F3 + F3F4 + · · ·+ F2n−1F2n =

2n∑

i=2

Fi−1Fi = F 2
2n

for some n ∈ Z
+. We want to show

2(n+1)
∑

i=2

Fi−1Fi = F 2
2n+2

By the inductive hypothesis,

2n+2∑

i=2

Fi−1Fi =

2n+2∑

i=2

Fi−1Fi + F2nF2n+1 + F2n+1F2n+2

= F 2
2n + F2nF2n+1 + F2n+1F2n+2

= F2n(F2n + F2n+1
︸ ︷︷ ︸

=F2n+2

) + F2n+1F2n+2

= F2nF2n+2 + F2n+1F2n+2

= (F2n + F2n+1
︸ ︷︷ ︸

=F2n+2

)F2n+2

= F 2
2n+2

By induction,

F1F2 + F2F3 + F3F4 + · · ·+ F2n−1F2n = F 2
2n

for every n ∈ Z
+.

4. (10 pts) Let A, B, and C be sets. Prove that

A− (B ∩ C) = (A−B) ∪ (A− C).

First, note that x ∈ A − (B ∩ C) iff x ∈ A and x 6∈ B ∩ C. Now, x ∈ B ∩ C iff x ∈ B

and x ∈ C. Hence x 6∈ B ∩ C iff x 6∈ B or x 6∈ C. So x ∈ A and x 6∈ B ∩ C iff x ∈ A and
x 6∈ B or x 6∈ C iff x ∈ A and x 6∈ B, or x ∈ A and x 6∈ C (by distributivity of and over or).
Note that x ∈ A and x 6∈ B iff x ∈ A − B, and similarly, x ∈ A and x 6∈ C iff x ∈ A − C.
Finally, x ∈ A − B or x ∈ A − C iff x ∈ (A − B) ∪ (A − C). Therefore x ∈ A − (B ∩ C) iff
x ∈ (A−B) ∪ (A− C), which proves A− (B ∩ C) = (A−B) ∪ (A− C).



In symbols, we have the following chain of equivalences:

x ∈ A− (B ∩ C) ≡ (x ∈ A) ∧ (x 6∈ B ∩ C)

≡ (x ∈ A) ∧ x ∈ B ∩ C

≡ (x ∈ A) ∧ (x ∈ B) ∧ (x ∈ C)

≡ (x ∈ A) ∧ (x ∈ B ∨ x ∈ C)

≡
(
(x ∈ A) ∧ x ∈ B

)
∨
(
(x ∈ A) ∧ x ∈ C

)

≡
(
(x ∈ A) ∧ (x 6∈ B)

)
∨
(
(x ∈ A) ∧ (x 6∈ C)

)

≡ (x ∈ A−B) ∨ (x ∈ A− C)

≡ x ∈ (A−B) ∪ (A− C)

5. (10 pts) Extra credit problem. For sets A and B define A = B if A is a subset of B and
B is a subset of A. Prove that equality of sets has the following three properties:

• Reflexivity: for all sets A, A = A.
• Symmetry: for all sets A and B, if A = B then B = A.
• Transitivity: for all sets A, B, and C, if A = B and B = C, then A = C.

First, note that any set is a subset of itself. That is A ⊆ A for all sets A. It follows that
A = A for all sets A by the definition of equality above.

Suppose A = B. Then A ⊆ B and B ⊆ A. So A and B are subsets of each other.
Therefore B = A.

Suppose A = B and B = C. Then A ⊆ B, B ⊆ A, B ⊆ C, and C ⊆ B. By the transitive
property of subset inclusion (Theorem 4.2.1), A ⊆ B and B ⊆ C implies A ⊆ C. Similarly,
C ⊆ B and B ⊆ A implies C ⊆ A. Therefore A = C.


