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1. (10 pts) The Division Algorithm says that if n ∈ Z and d ∈ Z+, then there exist unique
integers q, r such that n = qd+ r where 0 ≤ r < d. Give a proof.

Let S = {n − kd | k ∈ Z and n− kd ≥ 0}. Notice that S is nonempty because if n ≥ 0
then n ∈ S and if n < 0 then n− nd = n(1− d) ≥ 0 since 1− d ≤ 0. Hence S is a nonempty
set of nonnegative integers. By the Well-Ordering Principle, S contains a smallest element
r. This must be of the form r = n− qd for some q ∈ Z. Obviously, r ≥ 0 since r ∈ S. Now,
suppose r ≥ d. Then 0 ≤ r − d = n − (q + 1)d must also be in S. But r − d < r, so this
would contradict the minimality of r. Hence we can conclude 0 ≤ r < d and n = qd+ r.

For the uniqueness, suppose n = q1d + r1 = q2d + r2 for some q1, q2, r1, r2 ∈ Z and
0 ≤ r1, r2 < d. Then r1 − r2 = q2d − q1d = (q2 − q1)d. This shows r1 − r2 is a multiple of
d. But we know 0 ≤ r1, r2 < d, so −d < r1 − r2 < d. The only multiple of d in that range
is 0. Hence r1 − r2 = 0, which shows r1 = r2. Since d 6= 0, it now follows that q1 − q2 = 0,
and hence q1 = q2. Therefore there is only one way to write n = qd + r where q, r ∈ Z and
0 ≤ r < d.

2. (5 pts each)
(a) Let A and B be sets. Is the following statement true? If you think it is true, find a

convincing argument to show it is true; if not, find an argument or a counterexample to
show it is false.

(A ∪B) \ (A ∩B) = (A \B) ∪ (B \A)

This is true.

(A ∪B) \ (A ∩B) = {x | x ∈ A or x ∈ B and x is not in both A and B}.

(A \B) ∪ (B \A) = {x | x ∈ A but x 6∈ B or x ∈ B but x 6∈ A}.

That is the sets on both sides contain those elements that are in exactly one of A or B
and not in the other. Hence the two sides are equal.

(b) Prove or disprove (e.g. by finding a counterexample) the following statement. If n is an
integer such that 2|n and 3|n then 6|n.

This is also true. It follows from the general fact that if a and b are relatively prime
integers and a|n and b|n then ab|n. Here is why. Since a|n we have n = ka for some
k ∈ Z. Similarly, we have n = mb for some m ∈ Z. As a and b are relatively prime, we
know 1 = la+ zb for some l, z ∈ Z. Hence

k = k(la+ zb) = l(ka) + kzb = l(mb) + kzb = (lm+ kz)b

Obviously, lm+ kz ∈ Z. Let t = lm+ kz. The n = ka = (tb)a = t(ab).
Since 2 and 3 are relatively prime, 2|n and 3|n implies 6|n.

Of course, in this particular case, a quicker argument to make is that since 3|n, n = 3k for
some k ∈ Z and since 2|3k and 2 is a prime number, either 2|3 or 2|k by Euclid’s Lemma.
Since 2 6 |3, it nust be that 2|k, So k = 2m for some m ∈ Z. Now n = 3(2m) = 6m.

(c) Let x, y be odd integers. Use modular arithmetic modulo some appropriate n ∈ Z to
prove that 4 ∤ (x2 + y2).



We will work modulo 4. If x is odd, then x ≡ 1 (mod 4) or x ≡ 3 (mod 4). Hence
x2 ≡ 1 (mod 4) or x2 ≡ 9 ≡ 1 (mod 4). The same is true for y. So x2 + y2 ≡ 1 + 1 ≡ 2
(mod 4). Therefore x2 + y2 is not divisible by 4.

3. (10 pts) In this exercise, you will prove that our definition of the greatest common divisor is
equivalent to the one you learned in middle school. Let m,n ∈ Z not both 0.

Suppose d1 > 0 is the greatest common divisor of m and n according to our definition:
(a) d1|m and d1|n,
(b) if c is an integer such that c|m and c|n then c|d1.
Let d2 be the common divisor of m and n that is the largest number among the common
divisors. That is we know
(a) d2|m and d2|n,

(b) if c is an integer such that c|m and c|n then c ≤ d2.
Show that d1 = d2.

Since d1|m and d1|n, we know d1 ≤ d2. Since d2|m and d2|n, we know d2|d1. So d1 = kd2
for some k ∈ Z. Notice that k must be positive as d1 and d2 are both positive. Now,
kd2 = d1 ≤ d2, and dividing by d2 > 0 shows k ≤ 1. The only such positive integer is k = 1.
Hence d1 = d2.

4. Let n ∈ Z+.
(a) (3 pts) If x ∈ Z, define the multiplicative order of x modulo n.

The multiplicative order of an integer x modulo n is the least k ∈ Z+ such that

xk ≡ 1 (mod n).

(b) (6 pts) Prove that there is a positive integer k such that xk ≡ 1 (mod n) if and only if
x is relatively prime to n.

Suppose xk ≡ 1 (mod n) for some k ∈ Z+. Then xk = 1 + zn for some z ∈ Z. Hence
1 = xk − zn. Let d = gcd(x, n). Since d|xk and d|zn, so d|xk − zn = 1. Hence d = 1
and x and n are relatively prime.
Conversely, suppose x is relatively prime to n. Look at the list x, x2, x3, . . . . Since there
are only n different remainders after division by n, the elements in this list cannot all be
different modulo n. There must be some a < b such that xa ≡ xb (mod n). We know x

is relatively prime to n, so x has a multiplicative inverse x−1 modulo n. Multiply both
sides by

(

x−1
)a

to get

1 ≡
(

x−1
)a
xa ≡

(

x−1
)a
xb ≡ xb−a (mod n).

Now, k = b− a is a positive integer and xb−a ≡ 1 (mod n).

(c) (6 pts) Prove that if x is relatively prime to n, then xφ(n) ≡ 1 (mod n) where φ(n) is
the Euler (totient) function.

Let S = {y | y ∈ Z, 0 ≤ y < n, and gcd(y, n) = 1}. Notice that S consists of those
canonical representatives modulo n that are units. We know S has φ(n) elements. Let
us label them S = {y1, y2, . . . , yφ(n)}. Now, let T = {xyi | i = 1, . . . φ(n)}. Since x

and yi here are all units, each xyi is also a unit by problem 2 on Homework 5. Now, if
xyi ≡ xyj (mod n) then yi ≡ x−1xyi ≡ x−1xyj ≡ yj (mod n). Hence the xyi’s in T are
all distinct. Therefore T also consists of all of the units modulo n. That is S = T . So
the product of all the elements in S is the same as the product of all the elements in T :

y1y2 · · · yφ(n) ≡ (xy1)(xy2) · · · (xyφ(n)) (mod n).



Rearranging this a bit gives

y1y2 · · · yφ(n) ≡ xφ(n)y1y2) · · ·xφ(n) (mod n).

Since the y’s are all units, we can cancel them from this equivalence by multiplying both
sides by their inverses This results in 1 ≡ xφ(n) (mod n).

5. (10 pts) Bob, the carpenter likes to do his calculations in base 9, for reasons that should be
obvious if you think about it a little. But many materials Bob uses come in sizes that are
multiples of 4, e.g. 4’ by 8’ plywood sheets. Help Bob by devising a quick and easy strategy
to check if a positive integer expressed in base 9 is divisible by 4. Prove that your divisibility
test works.

Bob can check for divisibility by 4 by adding the digits of the integer and checking if their
sum is divisible by 4. E.g. starting with the number 7239, he would add 7+ 2+3 = 139 and
4|139, so 4|7239. Note that he can check if 4|139 either directly, or by adding 1 + 3 = 4 and
noting that 4|4. To show this test works, let n = dk9

k + dk−19
k−1 + · · · + d19 + d0. Notice

that 9 ≡ 1 (mod 4), and hence 9j ≡ 1j ≡ 1 (mod 4) for any j ∈ Z≥0. Therefore

n ≡ dk9
k + dk−19

k−1 + · · ·+ d19 + d0 (mod 4) ≡ dk + dk−1 + · · ·+ d1 + d0 (mod 4).

This shows that 4|n if and only if 4|dk + dk−1 + · · ·+ d1 + d0.

6. (10 pts) The Lucas numbers are defined by the following recursive relationship:

L0 = 2

L1 = 1

Ln = Ln−1 + Ln−2 for n ≥ 2.

Here are the first few Lucas numbers:

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . . .

Prove that any two consecutive Lucas numbers are relatively prime.

This can be done by induction, exactly the same way we proved that two consecutive
Fibonacci numbers are relatively prime. Notice that L0 and L1 are relatively prime. This
establishes the base case for our induction. For the inductive hypothesis, suppose that Ln

and Ln+1 are relatively prime. Now suppose that d ∈ Z+ divides both Ln+1 and Ln+2. Then
d also divides Ln+2 − Ln+1 = Ln. Hence d is a common divisor of Ln and Ln+1. By the
inductive hypothesis, d = 1. So Ln+1 and Ln+2 are relatively prime.

7. (5 pts each) Extra credit problem. Let S1, S2, . . . , Sn be finite sets. Our goal in this
problem is to prove the Inclusion-Exclusion Principle, which says

|S1 ∪ · · · ∪ Sn| =
n
∑

i=1

|Si| −
∑

1≤i<j≤n

|Si ∩ Sj |+
∑

1≤i<j<k≤n

|Si ∩ Sj ∩ Sk| − · · · − (−1)n|S1 ∩ · · · ∩ Sn|.

For example, if n = 3 then

|S1 ∪ S2 ∪ Ss| = |S1|+ |S2|+ |S3| − |S1 ∩ S2| − |S1 ∩ S3| − |S2 ∩ S3|+ |S1 ∩ S2 ∩ S3|.

(a) Suppose that x is in m of the sets and not in the other n−m. How many different ways
can you choose k out of the sets S1, S2, . . . , Sn so that their intersection contains x?

In order for x to be in the intersection of k of the sets, all of them must contain x. So
we must choose the k sets from among the m that contain x. There are

(

m
k

)

ways to
choose k out of m objects if the order does not matter. And the order obviously does
not matter as the intersection of sets is commutative.



(b) Prove that
(

n

1

)

−

(

n

2

)

+

(

n

3

)

− · · · − (−1)n
(

n

n

)

= 1.

Hint: Use the binomial theorem.

By the binomial theorem

0 = ((−1) + 1)n

=

(

n

n

)

(−1)n10 +

(

n

n− 1

)

(−1)n−111 + · · ·+

(

n

2

)

(−1)21n−2 +

(

n

1

)

(−1)11n−1 +

(

n

0

)

(−1)01n

= (−1)n
(

n

n

)

+ (−1)n−1

(

n

n− 1

)

+ · · ·+

(

n

2

)

−

(

n

1

)

+

(

n

0

)

By moving all but the
(

n
0

)

term to the other side, it follows that

1 =

(

n

0

)

= −(−1)n
(

n

n

)

− (−1)n−1

(

n

n− 1

)

− · · · −

(

n

2

)

+

(

n

1

)

,

which is what we wanted to show.

(c) Prove the Inclusion-Exclusion Principle by looking at how many times each element
x ∈ S1 ∪ · · · ∪ Sn is counted in the expression

n
∑

i=1

|Si| −
∑

1≤i<j≤n

|Si ∩ Sj |+
∑

1≤i<j<k≤n

|Si ∩ Sj ∩ Sk| − · · ·+ (−1)n|S1 ∩ · · · ∩ Sn|.

If x ∈ S1∪· · ·∪Sn, then x is counted exactly once in |S1∪· · ·∪Sn| on the left-hand side
of the equation. Let’s see how many times x is counted on the right-hand side. Since x

is in the union, it must be in some of the sets. Suppose it is in k of the n sets. Then
it is counted k times in

∑n
i=1 |Si|. It is also in

(

k
2

)

of the pairwise intersections, so it is

counted
(

k
2

)

times in
∑

1≤i<j≤n |Si ∩ Sj |. It shows up
(

k
3

)

times in the intersections of
three sets. And so on. No intersection of more than k of the sets contains x, so it is
counted 0 times in such higher intersections. Therefore x contributes

k −

(

k

2

)

+

(

k

3

)

− · · · − (−1)k
(

k

k

)

times to the number
n
∑

i=1

|Si| −
∑

1≤i<j≤n

|Si ∩ Sj |+
∑

1≤i<j<k≤n

|Si ∩ Sj ∩ Sk| − · · · − (−1)n|S1 ∩ · · · ∩ Sn|.

But as we showed in part (b),

k −

(

k

2

)

+

(

k

3

)

− · · · − (−1)k
(

k

k

)

= 1.

So each element x ∈ S1 ∪ · · · ∪ Sn is counted exactly once on each side of

|S1 ∪ · · · ∪ Sn| =
n
∑

i=1

|Si| −
∑

1≤i<j≤n

|Si ∩ Sj |+
∑

1≤i<j<k≤n

|Si ∩ Sj ∩ Sk| − · · · − (−1)n|S1 ∩ · · · ∩ Sn|.

Therefore the two sides are indeed equal.


