- 1. Let $m, n \in \mathbb{Z}$ not both 0. We defined the greatest common divisor of m and n as a positive integer d such that
 - (a) d|m and d|n,

(b) if c is an integer such that c|m and c|n then c|d.

Prove that the greatest common divisor is unique. That is if d and d' both satisfy the two conditions above, then d = d'.

Since d|m and d|n, we know d|d'. So d' = kd for some $k \in \mathbb{Z}$. In fact, we know k > 0 because d and d' are both positive. Similarly, d = ld' for some $l \in \mathbb{Z}^+$. Hence

$$d = ld' = l(kd) = (lk)d.$$

Since $d \neq 0$, this implies lk = 1. But $k, l \in \mathbb{Z}^+$, so the only possibility is k = l = 1. Hence d = d'.

- 2. In this exercise, you will prove that our definition of the greatest common divisor is equivalent to the one you learned in middle school. Let $m, n \in \mathbb{Z}$ not both 0.
 - Suppose $d_1 > 0$ is the greatest common divisor of m and n according to our definition:
 - (a) $d_1|m$ and $d_1|n$,
 - (b) if c is an integer such that c|m and c|n then $c|d_1$.

Let d_2 be the common divisor of m and n that is the largest number among the common divisors. That is we know

- (a) $d_2|m$ and $d_2|n$,
- (b) if c is an integer such that c|m and c|n then $c \leq d_2$. Show that $d_1 = d_2$.

Since $d_1|m$ and $d_1|n$, we know $d_1 \leq d_2$. This also shows that $d_2 > 0$. Since $d_2|m$ and $d_2|n$, we also know $d_2|d_1$. So $d_1 = kd_2$ for some $k \in \mathbb{Z}$. Since d_1 and d_2 are both positive, k > 0. But k is an integer, so $k \geq 1$. Hence $d_1 \geq d_2$. The only way to have both $d_1 \leq d_2$ and $d_1 \geq d_2$ is to have $d_1 = d_2$.

3. Let $a, b \in \mathbb{Z}$ not both 0. Remember that we say a and b are relatively prime if gcd(a, b) = 1. Prove that a and b are relatively prime if and only if there exist $m, n \in \mathbb{Z}$ such that ma + nb = 1.

Suppose a and b are relatively prime. Then gcd(a, b) = 1 and by the Euclidean Algorithm (or Bezout's Identity), there exist $m, n \in \mathbb{Z}$ such that ma + nb = 1.

Conversely, suppose that 1 = ma + nb for some $m, n \in \mathbb{Z}$. We will show that 1 satisfies the definition of the gcd for a and b. First, 1 is obviously positive and 1|a and 1|b. Second, suppose $c \in \mathbb{Z}$ is such that c|a and c|b. Then a = xc and b = yc for some $x, y \in \mathbb{Z}$. Now

$$1 = ma + nb = m(xc) + n(yc) = (mx + ny)c.$$

Since mx + ny is an integer, this shows c|1. This is true for any common divisor c of a and b, so 1 is actually a greatest common divisor. Therefore a and b are relatively prime.