
MCS 150 Final Exam Solutions

1. (10 pts) Prove that 3
√
2 is irrational.

First, we prove a

Lemma. Let n be an integer. If n3 is even then n is even.

Proof: We will prove the contrapositive: if n is not even then n3 is not even. So let n be an
integer. Suppose n is not even. Then n is odd and n = 2q + 1 for some q ∈ Z. So

n3 = (2q + 1)3 = 8q3 + 12q2 + 6q + 1 = 2(4q3 + 6q2 + 3q) + 1.

Since q is an integer, 4q3, 6q2, and 3q are also integers, and so is their sum 4q3 + 6q2 + 3q.
Hence n3 is odd and therefore n3 is not even. �

Now, suppose the 3
√
2 is rational. Then 3

√
2 = m/n for some m,n ∈ Z such that n 6= 0. We

can always reduce the fraction to lowest terms, so assume that m and n have no nontrivial
common factor. Now,

2 =
(m

n

)3
=

m3

n3
=⇒ n3 = 2m3.

Since 2m3 is even, n3 must be even as well. Therefore n is also even by the lemma above.
So n = 2k for some k ∈ Z. Now

2m3 = n3 = (2k)3 = 8k3 =⇒ m3 = 4k3 = 2(2k3).

Since the 2(2k3) is even, m3 must be even as well. Therefore m is also even by the lemma.
But if m and n are both even, then 2 is a common factor of m and n. This contradicts the
assumption we made earlier about m/n being a fraction in lowest terms. So 3

√
2 must be

rational.

2. (10 pts) Let A and B be arbitrary nonempty sets. Under what conditions is (A×B)∩(B×A)
empty? Do not forget to fully justify your answer.

We will show that (A×B)∩ (B ×A) is empty if and only if A and B are disjoint, that is
A ∩ B is empty. First, we prove if (A × B) ∩ (B × A) = ∅ then A ∩ B = ∅ by proving the
contrapositive: if A∩B 6= ∅ then (A×B)∩ (B×A) 6= ∅. So suppose A∩B 6= ∅. Then there
is some element x that is both in A and B. Hence the ordered pair (x, x) is both in A× B
and B ×A. Therefore (A×B) ∩ (B ×A) is nonempty.

We will now prove if A∩B = ∅ then (A×B)∩ (B×A) = ∅ by proving the contrapositive:
if (A× B) ∩ (B × A) 6= ∅ then A ∩ B 6= ∅. So suppose (A× B) ∩ (B × A) 6= ∅. Then there
is an ordered pair (x, y) that is in both A×B and B × A. Since (x, y) ∈ A×B, x must be
in A and y must be in B. But (x, y) is also in B × A, so x must be in B and y must be in
A. Thus x ∈ A ∩ B, and hence A ∩ B is nonempty. (Now, y could be another element in
A ∩ B, or y could be the same thing as x, but it does not matter since we already showed
that A ∩B has at least one element.)

3. (10 pts) Given any arbitrary integers a, b, and c, show that if a|c, b|c, and gcd(a, b) = 1 then
ab|c.

Suppose a|c, b|c, and gcd(a, b) = 1. Since a|c and b|c, there exist q, r ∈ Z such that
c = qa = rb. Because gcd(a, b) = 1, we also know 1 = sa+ tb for some s, t ∈ Z. Hence

c = c(sa+ tb) = sac+ tbc = sarb+ tbqa = (sr + tq)(ab).

Since s, r, t and q are all integers, so is sr + tq. Therefore ab|c.



4. (10 pts) Recall that we defined the Fibonacci numbers {Fn}∞n=0 by F0 = 0, F1 = 1 and the
recurrence relation

Fn = Fn−1 + Fn−2 for n ≥ 2.

Use induction to prove that

Fn+1Fn−1 − F 2
n = (−1)n

for every positive integer n.

If n = 1 then

F1+1F1−1 − F 2
1 = F2F0 − F 2

1 = 1(0)− 12 = −1 = (−1)1,

which establishes the base case for the induction.
For the inductive hypothesis, suppose

Fn+1Fn−1 − F 2
n = (−1)n

for some positive integer n. We will prove that

F(n+1)+1F(n+1)−1 − F 2
n+1 = (−1)n+1.

First,

F(n+1)+1F(n+1)−1 − F 2
n+1 = Fn+2Fn − F 2

n+1.

Since Fn+2 = Fn+1 + Fn,

Fn+2Fn = (Fn+1 + Fn)Fn = Fn+1Fn + F 2
n .

Since Fn+1 = Fn + Fn−1,

F 2
n+1 = Fn+1Fn+1 = (Fn + Fn−1)Fn+1 = FnFn+1 + Fn−1Fn+1.

Hence

Fn+2Fn − F 2
n+1 = Fn+1Fn + F 2

n − FnFn+1 − Fn−1Fn+1

= F 2
n − Fn−1Fn+1

= −(Fn+1Fn−1 − F 2
n)

= −(−1)n

= (−1)n+1.

by the inductive hypothesis. It follows by induction that

Fn+1Fn−1 − F 2
n = (−1)n

for all n ∈ Z
+.

5. (10 pts) Let S be a finite set. Prove that the cardinality of the power set of S is

|P(S)| = 2|S|.

We gave several proofs of this. Here is the shortest of them. Since P(S) is the set of all
subsets of S, the cardinality of P(S) is the number of different subsets of S. To form any
subset T of S, we can decide for each element x ∈ S whether to include it in T or not. That
is two possible choices for each element of S. The choice for each element of S is independent
of the choices for the other elements. Therefore this gives us 2 ·2 · · · 2 choices for constructing
the subset T , where the number of 2s in the product is exactly the number of elements of S.
Hence |P(S)| = 2|S|.



For some reason, the popular choice among you was another proof we gave which uses
induction. It is a good example of using induction, but it is not the most efficient proof that
|P(S)| = 2|S|. But here it is to show you how the correct argument goes.

Let n = |S|. We want to prove |P(S)| = 2n. We will induct on n. For the base case, let
n = 0. So S has no elements, that is S = ∅. Then the only subset of S is ∅, so

P(S) = {∅} =⇒ |P(S)| = 1 = 20,

exactly as it should be.
For the inductive hypothesis, assume that it is true for some n ∈ Z

≥0 that for any set S
such that |S| = n, |P(S)| = 2n.

We now want to prove that if S is any set such that |S| = n+1 then |P(S)| = 2n+1. Pick
any element x ∈ S. Let T be set that consists of all of the elements of S except for x, that
is T = S − {x}. It is clear that |T | = n and hence |P(T )| = 2n by the inductive hypothesis.
So T has 2n different subsets T1, T2, . . . , T2n . Since T ⊆ S, each of these is also a subset of
S. Now, add x to each of the Ti, that is consider the sets

T1 ∪ {x}, T2 ∪ {x}, . . . , T2n ∪ {x}.
Since x ∈ S, these are also subsets of S. There are 2n of them. It is easy to see that

T1, T2, . . . , T2n , T1 ∪ {x}, T2 ∪ {x}, . . . , T2n ∪ {x}
are all distinct. Clearly, Ti 6= Tj for i 6= j since T1, T2, . . . , T2n were distinct subsets of T to
begin with. It is also true that if i 6= j then Ti ∪ {x} 6= Tj ∪ {x}. This is because either Ti

has an element y that is not in Tj and since y 6= x, y is not in Tj ∪{x} either, but obviously,
y ∈ Ti ∪ {x}, so Ti ∪ {x} 6= Tj ∪ {x}; or Tj has an element y that is not in Ti and then
Ti ∪ {x} 6= Tj ∪ {x} by an analogous argument. Finally, Ti 6= Tj ∪ {x} for any 1 ≤ i, j ≤ 2n,
because x 6∈ Ti but x ∈ Tj ∪ {x}. So we have found 2(2n) = 2n+1 different subsets of S.
The only thing that remains to show is that if A is any subset of S then A is one of these
2n+1 subsets. Either x 6∈ A, in which case A ⊆ T and hence A = Ti for some 1 ≤ i ≤ 2n, or
x ∈ A, in which case A− {x} ⊆ T and hence A− {x} = Ti for some i and so A = Ti ∪ {x}.
Therefore the 2n+1 subsets we listed above are all of the subsets of S. We can now conclude
that |P(S)| = 2n+1. By induction, |P(S)| = 2|S| must be true for a finite set S of any size.

6. Let n ∈ Z
+.

(a) (3 pts) Define congruence of integers, that is what

a ≡ b (mod n)

means for integers a and b.

For a, b ∈ Z, we say a is congruent to b modulo n, or

a ≡ b (mod n)

if n|(a− b).

(b) (7 pts) Let a, b, c, d ∈ Z such that

a ≡ b (mod n)

c ≡ d (mod n).

Prove that

a− c ≡ b− d (mod n).

We want to prove

a− c ≡ b− d (mod n),



that is n|[(a − c) − (b − d)]. Since a ≡ b (mod n) and c ≡ d (mod n), we know that
n|(a− b) and n|(c− d). Therefore

(a− c)− (b− d) = a− c− b+ d = (a− b)− (c− d)

is also divisible by n (by Theorem 5.3.2(3)).

7. (10 pts) Extra credit problem. We have seen in class that the Principle of Induction and
the Well-Ordering Principle are logically equivalent. Therefore where one can be used in a
proof, so can the other. Prove the identity

Fn+1Fn−1 − F 2
n = (−1)n

for Fibonacci numbers from problem 4 by using the Well-Ordering Principle instead of in-
duction. (Hint: Prove by contradiction that the set of positive integers for which the identity
does not hold must be empty.)

Let S be the set of all positive integers k for which

Fn+1Fn−1 − F 2
n 6= (−1)n.

We will show that S is the empty set and hence

Fn+1Fn−1 − F 2
n = (−1)n

for all positive integers n. Suppose S is not empty. As we already noted in problem 4,

F2F0 − F 2
1 = 1(0)− 12 = −1 = (−1)1,

so the identity holds for n = 1, and therefore 1 6∈ S.
Since S is a nonempty subset of Z+, S has a least element k by the Well-Ordering Principle.

We know 1 6∈ S, so k ≥ 2. Since k is the least element of S, k − 1 6∈ S. Therefore

F(k−1)+1F(k−1)−1 − F 2
k−1 = (−1)k−1 =⇒ FkFk−2 − F 2

k−1 = (−1)k−1

holds. Since k ≥ 2, we know that

Fk = Fk−1 + Fk−2 and Fk+1 = Fk + Fk−1

Hence, much like in our solution to problem 4,

Fk+1Fk−1 − F 2
k = (Fk + Fk−1)Fk−1 − F 2

k since Fk+1 = Fk + Fk−1

= FkFk−1 + F 2
k−1 − F 2

k

= F 2
k−1 + Fk(Fk−1 − Fk)

= F 2
k−1 − FkFk−2 since Fk = Fk−1 + Fk−2 =⇒ Fk−1 − Fk = −Fk−2

= −(FkFk−2 − F 2
k−1)

= −(−1)k−1

= (−1)k.

But this contradicts the fact that k ∈ S and so

Fk+1Fk−1 − F 2
k 6= (−1)k.

Assuming that S 6= ∅ led to a contradiction, so S must be empty, which is what we wanted
to prove.


