MCS 220 EXAM 1 SOLUTIONS Oct 11, 2019

1. (5 pts each)

(a) Let F be a field and $a \in F$. Prove that

$$(-1)a = -a.$$

Hint: remember that -a means the additive inverse of a.

$$\begin{array}{ll} (-1)a = (-1)a + 0 & \text{because 0 is the additive identity} \\ = (-1)a + (a + (-a)) & \text{because 0} = a + (-a) \\ = ((-1)a + a) + (-a) & \text{by associativity of addition} \\ = ((-1)a + 1a) + (-a) & \text{because } a = 1a \\ = (-1 + 1)a + (-a) & \text{by distributivity} \\ = 0a + (-a) & \text{because -1 is the additive inverse of 1} \\ = 0 + (-a) & \text{because 0 is the additive identity} \end{array}$$

Hence (-1)a = -a.

(b) Let F be an ordered field and $a \in F$. Prove that

 $0 \le a^2$.

If a > 0 then we can multiply both sides of the inequality a > 0 by a and get the inequality $a^2 > 0a$. We know 0a = 0 by another HW exercise. So a > 0 in this case. If a = 0, then $a^2 = 0^2 = 0$.

If a < 0, then 0 < -a by another homework problem. Now, multiply both sides of the last inequality by -a to get 0(-a) < (-a)(-a). We know 0(-a) = 0. Notice

(-a)(-a) = ((-1)a)((-1)a)	by part (a)
= (a(-1))((-1)a)	by commutativity of multiplication
$= \left(\left(a(-1)\right)(-1) \right) a$	by associativity of multiplication
= (a((-1)(-1)))a	by associativity of multiplication
= (a(-(-1)))a	by part (a), $(-1)(-1) = -(-1)$
=(a1)a	since $-(-1) = 1$ by HW exercise $-(-a) = a$
= aa	because 1 is the multiplicative identity

Hence $(-a)^2 = a^2$. So $0 < (-a)^2$ implies $0 < a^2$. In all three cases, we found $a^2 \ge 0$.

2. (5 pts each) Let S and T be nonempty sets of real numbers and define

$$S + T = \{s + t \mid s \in S, t \in T\}$$

Suppose S and T are both bounded from above. In this problem, you will prove that

$$\sup(S+T) = \sup(S) + \sup(T).$$

(a) First, let $\beta = \sup(S)$ and $\gamma = \sup(T)$. Show that $\beta + \gamma$ is an upper bound for S + T, that is every $x \in S + T$ satisfies $x \leq \beta + \gamma$.

Let x be any element in S + T. Then x = s + t for some $s \in S$ and $t \in T$. Since $\beta = \sup(S)$, we know $s \leq \beta$. Similarly, $t \leq \gamma$. Now, it is easy to see that $s + t \leq \beta + \gamma$. Hence $x \leq \beta + \gamma$ for every $x \in S + T$.

(b) Now prove that if $\epsilon > 0$, then $\beta + \gamma - \epsilon$ cannot be an upper bound of S + T because there must exist some $x \in S + T$ such that $x > \beta + \gamma - \epsilon$. Hint: to find such an x, use the fact that $\beta - \epsilon/2$ cannot be an upper bound of S and $\gamma - \epsilon/2$ cannot be an upper bound of T.

Suppose $\epsilon > 0$. Then $\epsilon/2 > 0$ as well. Therefore $\beta - \epsilon/2$ cannot be an upper bound for S and there must exist some $s_0 \in S$ such that $s_0 > \beta - \epsilon/2$ (by Theorem 1.1.3). Similarly, there must be a $t_0 \in S$ such that $t_0 > \gamma - \epsilon/2$. It is now easy to see that

 $\beta + \gamma - \epsilon = (\beta - \epsilon/2) + (\gamma - \epsilon/2) < s_0 + t_0 \in S + T,$

and hence $\beta + \gamma - \epsilon$ cannot be an upper bound of S + T.

3. (5 pts each) Let F be an ordered field and S a nonempty subset of F.(a) State the definitions of the supremum and infimum of S.

An element $\beta \in F$ is a supremum of S if (i) $x \leq \beta$ for all $x \in S$,

(ii) for any $\gamma \in F$ such that $\gamma < \beta$ there exists some $x_0 \in S$ such that $x_0 > \gamma$. Similarly, an element $\beta \in F$ is an infimum of S if

(i) $x \ge \beta$ for all $x \in S$,

(ii) for any $\gamma \in F$ such that $\gamma > \beta$ there exists some $x_0 \in S$ such that $x_0 < \gamma$.

(b) Suppose S has a supremum β . Define

$$-S = \{-x \mid x \in S\}.$$

Prove that $-\beta$ is the infimum of -S.

First, we will show that $-\beta$ is a lower bound for -S. Let y be any element of -S. Then y = -x for some $x \in S$. We know that $x \leq \beta$. Multiplying this inequality by -1 yields $-\beta \leq -x = y$. This is true for any $y \in -S$, so $-\beta$ is a lower bound of -S.

Now, suppose $\gamma > -\beta$. We will show that γ is not a lower bound of -S. Multiplying the previous inequality by -1 gives $-\gamma < \beta$. Since β is the supremum of S, there must exist some $x_0 \in S$ such that $-\gamma < x_0$. Multiply this by -1 to get $\gamma > -x_0 \in -S$. So γ is not a lower bound of -S.

4. (10 pts) Use induction to prove that

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$

for all $n \in \mathbb{Z}^+$.

Note that when n = 1, we have 1 = 1. This establishes the base case. Now, assume that

$$1+3+5+\dots+(2n-1)=n^{2}$$

for some $n \in \mathbb{Z}^+$. Then

$$1 + 3 + 5 + \dots + (2(n+1) - 1) = n^2 + (2n+1) = n^2 + 2n + 1 = (n+1)^2.$$

Therefore

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$

for all $n \in \mathbb{Z}^+$.

- 5. (5 pts each) **Extra credit problem.** In this exercise, you will prove that the field of complex numbers cannot be ordered.
 - (a) First, prove that in any ordered field F,

$$-1 < a^2$$

for all $a \in F$.

By a homework problem, 0 < 1. We can add -1 to both sides and we get -1 < 1 + (-1) = 0. Now, let $a \in F$. In problem 1, we showed that $0 \le a^2$. If $0 < a^2$, then $-1 < a^2$ by transitivity. If $a^2 = 0$, then $-1 < 0 = a^2$. In either case, $-1 < a^2$.

(b) Now, find a complex number z such that no matter how < is defined on $\mathbb C$

 $-1 < z^2$

cannot be true. Conclude that it is therefore impossible to define an order < on \mathbb{C} which would satisfy the properties of an ordered field.

Since $-1 = i^2$, it cannot be true that $-1 < i^2$, no matter how one tries to define < on \mathbb{C} . Now, if < were an order on \mathbb{C} , it would have to be true that $-1 < z^2$ for all $z \in \mathbb{C}$, including z = i. And since that is not true, there must not exist an order on \mathbb{C} .