MCS 220 ExXAM 1 SOLUTIONS
Oct 11, 2019

1. (5 pts each)
(a) Let F be a field and a € F. Prove that

(—1)a = —a.

Hint: remember that —a means the additive inverse of a.

(—)a=(-1)a+0 because 0 is the additive identity
=(-1a+ (a+ (—a)) because 0 = a + (—a)
=((-Da+a)+ (—a) by associativity of addition
=((-Da+ 1la) + (—a) because a = la
=(-14+1)a+ (—a) by distributivity
=0a + (—a) because -1 is the additive inverse of 1
=0+ (—a) by another homework exercise, 0a = 0
=—a because 0 is the additive identity

Hence (—1)a = —a.
(b) Let F be an ordered field and a € F. Prove that
0< a’.

If @ > 0 then we can multiply both sides of the inequality a > 0 by a and get the
inequality a? > 0a. We know Oa = 0 by another HW exercise. So a > 0 in this case.

If a = 0, then a® = 0% = 0.

If a < 0, then 0 < —a by another homework problem. Now, multiply both sides of the
last inequality by —a to get 0(—a) < (—a)(—a). We know 0(—a) = 0. Notice

(—a)(=a) = ((-1)a)((~1)a) by part (a)

a
a) by commutativity of multiplication

= (—

= (a(-D)((-1)

= ((a(-1))(-1))a by associativity of multiplication

= (a((-=1)(-1)))a by associativity of multiplication

= (a(=(=1))a by part (a), (=1)(=1) = =(=1)

= (al)a since —(—1) =1 by HW exercise —(—a) = a
=aa because 1 is the multiplicative identity

Hence (—a)? = a%. So 0 < (—a)? implies 0 < a?.
In all three cases, we found a? > 0.

2. (5 pts each) Let S and T" be nonempty sets of real numbers and define
S+T={s+t|seSteT}.
Suppose S and T are both bounded from above. In this problem, you will prove that
sup(S + T') = sup(S) + sup(T).



(a)

First, let 5 = sup(S) and v = sup(7T"). Show that § + ~ is an upper bound for S + T,
that is every x € S 4+ T satisfies < 3 + 7.

Let = be any element in S + 7. Then x = s+t for some s € S and t € T. Since
B = sup(S), we know s < 5. Similarly, ¢t < . Now, it is easy to see that s +¢ < 5+ 7.
Hence x < 5+ v for every x € S + T

Now prove that if € > 0, then 8 + v — € cannot be an upper bound of S + T because
there must exist some z € S 4+ T such that x > 8 + v — e. Hint: to find such an z, use
the fact that § — €¢/2 cannot be an upper bound of S and v — €/2 cannot be an upper
bound of T

Suppose € > 0. Then €/2 > 0 as well. Therefore 8 — ¢/2 cannot be an upper bound
for S and there must exist some sop € S such that so > 8 — €/2 (by Theorem 1.1.3).
Similarly, there must be a ty € S such that ty > v — €/2. It is now easy to see that

B+y—e=(B—€/2)+(y—€/2)<sog+tg€S+T,
and hence 8 + v — € cannot be an upper bound of S+ T

3. (5 pts each) Let F' be an ordered field and S a nonempty subset of F.

(a)

State the definitions of the supremum and infimum of S.

An element 8 € F is a supremum of S if
(i) e < Bforallz e s,

(ii) for any v € F such that v < § there exists some xg € S such that xg > 7.
Similarly, an element 8 € F is an infimum of S if
(i) z>pforalxe S,

(ii) for any v € F such that v > 3 there exists some xg € S such that zg < 7.

Suppose S has a supremum (. Define
—S={-z|zeS}
Prove that —/f is the infimum of —S.

First, we will show that —f is a lower bound for —S. Let y be any element of —S. Then
y = —x for some x € §. We know that z < 5. Multiplying this inequality by —1 yields
—B < —x =y. This is true for any y € —S, so —f is a lower bound of —S.

Now, suppose v > —f. We will show that 7 is not a lower bound of —S. Multiplying
the previous inequality by —1 gives —y < . Since [ is the supremum of S, there must
exist some xg € S such that —y < xg. Multiply this by —1 to get v > —z¢ € —S. So v
is not a lower bound of —S.

4. (10 pts) Use induction to prove that

14+3+54+-+(2n—1)=n?

foralln € Z 7.

Note that when n = 1, we have 1 = 1. This establishes the base case. Now, assume that

14345+--+2n—1)=n?

for some n € Z*. Then

143454+ +2n+D) - =n>+2n+1)=n’+2n+1=(n+ 1)



Therefore

14+34+5+-+2n—1)=n?

foralln € Z™T.

5. (5 pts each) Extra credit problem. In this exercise, you will prove that the field of complex
numbers cannot be ordered.

(a)

First, prove that in any ordered field F,
~1<a?
for all a € F.
By a homework problem, 0 < 1. We can add —1 to both sides and we get —1 <
1+ (=1) = 0. Now, let a € F. In problem 1, we showed that 0 < a?. If 0 < a?, then

—1 < a? by transitivity. If a® = 0, then —1 < 0 = a?. In either case, —1 < a?.
Now, find a complex number z such that no matter how < is defined on C

—1<2?
cannot be true. Conclude that it is therefore impossible to define an order < on C which

would satisfy the properties of an ordered field.

Since —1 = i2, it cannot be true that —1 < i2, no matter how one tries to define < on
C. Now, if < were an order on C, it would have to be true that —1 < 22 for all z € C,
including z = ¢. And since that is not true, there must not exist an order on C.



