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1. (5 pts each)
(a) Let F be a field and a ∈ F . Prove that

(−1)a = −a.

Hint: remember that −a means the additive inverse of a.

(−1)a = (−1)a+ 0 because 0 is the additive identity

= (−1)a+ (a+ (−a)) because 0 = a+ (−a)

= ((−1)a+ a) + (−a) by associativity of addition

= ((−1)a+ 1a) + (−a) because a = 1a

= (−1 + 1)a+ (−a) by distributivity

= 0a+ (−a) because -1 is the additive inverse of 1

= 0 + (−a) by another homework exercise, 0a = 0

= −a because 0 is the additive identity

Hence (−1)a = −a.

(b) Let F be an ordered field and a ∈ F . Prove that

0 ≤ a2.

If a > 0 then we can multiply both sides of the inequality a > 0 by a and get the
inequality a2 > 0a. We know 0a = 0 by another HW exercise. So a > 0 in this case.
If a = 0, then a2 = 02 = 0.
If a < 0, then 0 < −a by another homework problem. Now, multiply both sides of the
last inequality by −a to get 0(−a) < (−a)(−a). We know 0(−a) = 0. Notice

(−a)(−a) =
(

(−1)a
)(

(−1)a
)

by part (a)

=
(

a(−1)
)(

(−1)a
)

by commutativity of multiplication

=
((

a(−1)
)

(−1)
)

a by associativity of multiplication

=
(

a
(

(−1)(−1)
))

a by associativity of multiplication

=
(

a
(

− (−1)
))

a by part (a), (−1)(−1) = −(−1)

= (a1)a since −(−1) = 1 by HW exercise −(−a) = a

= aa because 1 is the multiplicative identity

Hence (−a)2 = a2. So 0 < (−a)2 implies 0 < a2.
In all three cases, we found a2 ≥ 0.

2. (5 pts each) Let S and T be nonempty sets of real numbers and define

S + T = {s+ t | s ∈ S, t ∈ T}.

Suppose S and T are both bounded from above. In this problem, you will prove that

sup(S + T ) = sup(S) + sup(T ).



(a) First, let β = sup(S) and γ = sup(T ). Show that β + γ is an upper bound for S + T ,
that is every x ∈ S + T satisfies x ≤ β + γ.

Let x be any element in S + T . Then x = s + t for some s ∈ S and t ∈ T . Since
β = sup(S), we know s ≤ β. Similarly, t ≤ γ. Now, it is easy to see that s+ t ≤ β + γ.
Hence x ≤ β + γ for every x ∈ S + T .

(b) Now prove that if ǫ > 0, then β + γ − ǫ cannot be an upper bound of S + T because
there must exist some x ∈ S + T such that x > β + γ − ǫ. Hint: to find such an x, use
the fact that β − ǫ/2 cannot be an upper bound of S and γ − ǫ/2 cannot be an upper
bound of T .

Suppose ǫ > 0. Then ǫ/2 > 0 as well. Therefore β − ǫ/2 cannot be an upper bound
for S and there must exist some s0 ∈ S such that s0 > β − ǫ/2 (by Theorem 1.1.3).
Similarly, there must be a t0 ∈ S such that t0 > γ − ǫ/2. It is now easy to see that

β + γ − ǫ = (β − ǫ/2) + (γ − ǫ/2) < s0 + t0 ∈ S + T,

and hence β + γ − ǫ cannot be an upper bound of S + T .

3. (5 pts each) Let F be an ordered field and S a nonempty subset of F .
(a) State the definitions of the supremum and infimum of S.

An element β ∈ F is a supremum of S if
(i) x ≤ β for all x ∈ S,

(ii) for any γ ∈ F such that γ < β there exists some x0 ∈ S such that x0 > γ.
Similarly, an element β ∈ F is an infimum of S if

(i) x ≥ β for all x ∈ S,

(ii) for any γ ∈ F such that γ > β there exists some x0 ∈ S such that x0 < γ.

(b) Suppose S has a supremum β. Define

−S = {−x | x ∈ S}.

Prove that −β is the infimum of −S.

First, we will show that −β is a lower bound for −S. Let y be any element of −S. Then
y = −x for some x ∈ S. We know that x ≤ β. Multiplying this inequality by −1 yields
−β ≤ −x = y. This is true for any y ∈ −S, so −β is a lower bound of −S.
Now, suppose γ > −β. We will show that γ is not a lower bound of −S. Multiplying
the previous inequality by −1 gives −γ < β. Since β is the supremum of S, there must
exist some x0 ∈ S such that −γ < x0. Multiply this by −1 to get γ > −x0 ∈ −S. So γ
is not a lower bound of −S.

4. (10 pts) Use induction to prove that

1 + 3 + 5 + · · ·+ (2n− 1) = n2

for all n ∈ Z
+.

Note that when n = 1, we have 1 = 1. This establishes the base case. Now, assume that

1 + 3 + 5 + · · ·+ (2n− 1) = n2

for some n ∈ Z
+. Then

1 + 3 + 5 + · · ·+ (2(n+ 1)− 1) = n2 + (2n+ 1) = n2 + 2n+ 1 = (n+ 1)2.



Therefore
1 + 3 + 5 + · · ·+ (2n− 1) = n2

for all n ∈ Z
+.

5. (5 pts each) Extra credit problem. In this exercise, you will prove that the field of complex
numbers cannot be ordered.
(a) First, prove that in any ordered field F ,

−1 < a2

for all a ∈ F .

By a homework problem, 0 < 1. We can add −1 to both sides and we get −1 <
1 + (−1) = 0. Now, let a ∈ F . In problem 1, we showed that 0 ≤ a2. If 0 < a2, then
−1 < a2 by transitivity. If a2 = 0, then −1 < 0 = a2. In either case, −1 < a2.

(b) Now, find a complex number z such that no matter how < is defined on C

−1 < z2

cannot be true. Conclude that it is therefore impossible to define an order < on C which
would satisfy the properties of an ordered field.

Since −1 = i2, it cannot be true that −1 < i2, no matter how one tries to define < on
C. Now, if < were an order on C, it would have to be true that −1 < z2 for all z ∈ C,
including z = i. And since that is not true, there must not exist an order on C.


