MCS 220 EXAM 2 SOLUTIONS
Nov 8, 2019

1. (10 pts) Let a > 2 be an integer. Show by induction (on n) that if n is a nonnegative integer
then n = aq + r for some integers ¢ and r such that 0 < r < a.

Suppose a > 2 is an integer.

Base case: if n =0 then ¢ = r = 0 work because 0 = a0+ 0, and 0 € Z and 0 < 0 < a.

Now, assume that for some n € Z=Z°, there exist ¢, € Z such that 0 < r < a and
n = aq + r. We need to show that n + 1 = aq’ + ' for some ¢’,r" € Z such that 0 <1’ < a.
We know

n+l=(ag+r)+1=aqg+r+1.

Now,if 0<r<a—1then0<r+1<a,son+1=aq¢ +1 forqd =qgandr’ =r+1isof
the right form. If r = a — 1 then r + 1 = a, and so

n+l=ag+r+1=aqg+a=ualqg+1),

which is of the right form for ¢ = ¢+ 1 and 7’ = 0.
Therefore the statement is true for any n € Z=9.

2. (10 pts) Show that the intersection of finitely many open sets in R is open.

Let S1,...,5, be open sets. If x € SyN---NS,, then z € 5; for each 1 < ¢ < n. Since
S; is open for each i, there must exist an ¢; > 0 such that the ¢;-neighborhood of x is in
S;. Let € = min;(¢;). Then the e-neighborhood of x is contained in the ¢;-neighborhood of
x for each ¢, and hence it is contained in S;. It follows that the e-neighborhood of x is also
in Sy N---NS,. Therefore x is an interior point of the intersection. Since x was any point
in the intersection, every point of the intersection is interior, and hence the intersection is
open.

3. (5 pts each)
(a) Let S C R. State the definitions of limit point and boundary point of S.

The point « € R is a limit point of S is every e-neighborhood of = contains some y # z
in S. And x is a boundary point of S if every e-neighborhood of x contains some point
in S and another point not in .S.

(b) Give an example of a set S C R which has a limit point that is not a boundary point
and a boundary point which is not a limit point.

Let S = (0,1) U{2}. Then 1/2 is a limit point, since every e-neighborhood of 1/2 will
contain some x € S other than 1/2, e.g. 3/4ife > 1/4dorz =1/2+¢/2if ¢ < 1/4.
But 1/2 is not a boundary point because for example, the 1/2-neighborhood of 1/2
contains no point that is not is S. On the other hand, 2 is a boundary point, since every
e-neighborhood of 2 contains some x & S, e.g. x = 2 + ¢/2, while it also contains 2 € S.
But 2 is not a limit point because for example, the 1/2-neighborhood of 2 contains no
point of S other than 2 itself.

4. (10 pts) Prove that a set S of real numbers is closed if and only if contains all of its limit
points.

First, suppose that S C R is closed. Let x € S€. Since S is closed, S is open, so x must
be an interior point of S¢. This means that some e-neighborhood of « lies in S. But such an



e-neighborhood of x contains no point of S, so  cannot be a limit point of S. This shows
that no limit point of S can be in S¢, that is every limit point of S must be in S.

Conversely, suppose that S contains all of its limit points. We will show that every point
of S€¢ is interior. Let x € S°. Since x € S, it cannot be a limit point of S, so there must be
some e-neighborhood of x that contains no point of S other than x itself. But z itself is also
in S¢ so every point of such an e-neighborhood is in S¢, which makes x an interior point in
S¢. We have just proved that any point = € S must be interior, hence S¢ is open and S is
closed.

. (10 pts) Extra credit problem. For a set S of real numbers, we defined the closure S of
S as the union of S and its boundary:

S =Suas.
Let S’ be the set of all limit points of S. Show that
S=SuUg,

that is we could have also defined the closure of S as the union of S and its limit points.
(Hint: remember that two sets A and B are equal if A C B and B C A.

We need to show that SUHS C SUS" and SUS’ C SUAS. Suppose z € SUIS. If z € S
then z is also in SUS’. If z € S then x must be in 95, so x is a boundary point of S. Then
every e-neighborhood of = contains a point y € S. Since z ¢ S, such a y must be different
from x. So every e-neighborhood of x contains a point in S other than x itself. Hence z is a
limit point of S. That is z € S/, and hence z € SUS’. So every z € SUJS is also in SU S’.
This shows SUOS C SU S .

Now, suppose z € SUS’. If x € S then z is also in SUJS. If x € S then x must be in
S’ so x is a limit point of S. Then every e-neighborhood of x contains a point y # x in S.
Hence every e-neighborhood of x contains a point in S. But every e-neighborhood of z also
contains z, which is a point not in S. Hence x is a boundary point of S. That is z € 95,
and hence x € SUOS. So every x € SU S’ is also in S U dS. This shows SU S C SUIS.
We can now conclude that SUJS = SU S’



