MCS 220 EXAM 2 SOLUTIONS Nov 8, 2019

1. (10 pts) Let $a \ge 2$ be an integer. Show by induction (on n) that if n is a nonnegative integer then n = aq + r for some integers q and r such that $0 \le r < a$.

Suppose $a \ge 2$ is an integer.

Base case: if n = 0 then q = r = 0 work because 0 = a0 + 0, and $0 \in \mathbb{Z}$ and $0 \le 0 < a$. Now, assume that for some $n \in \mathbb{Z}^{\ge 0}$, there exist $q, r \in \mathbb{Z}$ such that $0 \le r < a$ and n = aq + r. We need to show that n + 1 = aq' + r' for some $q', r' \in \mathbb{Z}$ such that $0 \le r' < a$. We know

$$n+1 = (aq+r) + 1 = aq + r + 1.$$

Now, if $0 \le r < a - 1$ then $0 \le r + 1 < a$, so n + 1 = aq' + r' for q' = q and r' = r + 1 is of the right form. If r = a - 1 then r + 1 = a, and so

$$n + 1 = aq + r + 1 = aq + a = a(q + 1),$$

which is of the right form for q' = q + 1 and r' = 0. Therefore the statement is true for any $n \in \mathbb{Z}^{\geq 0}$.

2. (10 pts) Show that the intersection of finitely many open sets in \mathbb{R} is open.

Let S_1, \ldots, S_n be open sets. If $x \in S_1 \cap \cdots \cap S_n$, then $x \in S_i$ for each $1 \leq i \leq n$. Since S_i is open for each *i*, there must exist an $\epsilon_i > 0$ such that the ϵ_i -neighborhood of *x* is in S_i . Let $\epsilon = \min_i(\epsilon_i)$. Then the ϵ -neighborhood of *x* is contained in the ϵ_i -neighborhood of *x* for each *i*, and hence it is contained in S_i . It follows that the ϵ -neighborhood of *x* is also in $S_1 \cap \cdots \cap S_n$. Therefore *x* is an interior point of the intersection. Since *x* was any point in the intersection, every point of the intersection is interior, and hence the intersection is open.

- 3. (5 pts each)
 - (a) Let $S \subseteq \mathbb{R}$. State the definitions of limit point and boundary point of S.

The point $x \in \mathbb{R}$ is a limit point of S is every ϵ -neighborhood of x contains some $y \neq x$ in S. And x is a boundary point of S if every ϵ -neighborhood of x contains some point in S and another point not in S.

(b) Give an example of a set $S \subseteq \mathbb{R}$ which has a limit point that is not a boundary point and a boundary point which is not a limit point.

Let $S = (0, 1) \cup \{2\}$. Then 1/2 is a limit point, since every ϵ -neighborhood of 1/2 will contain some $x \in S$ other than 1/2, e.g. 3/4 if $\epsilon > 1/4$ or $x = 1/2 + \epsilon/2$ if $\epsilon \leq 1/4$. But 1/2 is not a boundary point because for example, the 1/2-neighborhood of 1/2 contains no point that is not is S. On the other hand, 2 is a boundary point, since every ϵ -neighborhood of 2 contains some $x \notin S$, e.g. $x = 2 + \epsilon/2$, while it also contains $2 \in S$. But 2 is not a limit point because for example, the 1/2-neighborhood of 2 contains no point of S other than 2 itself.

4. (10 pts) Prove that a set S of real numbers is closed if and only if contains all of its limit points.

First, suppose that $S \subseteq \mathbb{R}$ is closed. Let $x \in S^c$. Since S is closed, S^c is open, so x must be an interior point of S^c . This means that some ϵ -neighborhood of x lies in S. But such an ϵ -neighborhood of x contains no point of S, so x cannot be a limit point of S. This shows that no limit point of S can be in S^c , that is every limit point of S must be in S.

Conversely, suppose that S contains all of its limit points. We will show that every point of S^c is interior. Let $x \in S^c$. Since $x \notin S$, it cannot be a limit point of S, so there must be some ϵ -neighborhood of x that contains no point of S other than x itself. But x itself is also in S^c , so every point of such an ϵ -neighborhood is in S^c , which makes x an interior point in S^c . We have just proved that any point $x \in S^c$ must be interior, hence S^c is open and S is closed.

5. (10 pts) **Extra credit problem.** For a set S of real numbers, we defined the closure \overline{S} of S as the union of S and its boundary:

$$\overline{S} = S \cup \partial S.$$

Let S' be the set of all limit points of S. Show that

$$\overline{S} = S \cup S',$$

that is we could have also defined the closure of S as the union of S and its limit points. (Hint: remember that two sets A and B are equal if $A \subseteq B$ and $B \subseteq A$.

We need to show that $S \cup \partial S \subseteq S \cup S'$ and $S \cup S' \subseteq S \cup \partial S$. Suppose $x \in S \cup \partial S$. If $x \in S$ then x is also in $S \cup S'$. If $x \notin S$ then x must be in ∂S , so x is a boundary point of S. Then every ϵ -neighborhood of x contains a point $y \in S$. Since $x \notin S$, such a y must be different from x. So every ϵ -neighborhood of x contains a point in S other than x itself. Hence x is a limit point of S. That is $x \in S'$, and hence $x \in S \cup S'$. So every $x \in S \cup \partial S$ is also in $S \cup S'$. This shows $S \cup \partial S \subseteq S \cup S'$.

Now, suppose $x \in S \cup S'$. If $x \in S$ then x is also in $S \cup \partial S$. If $x \notin S$ then x must be in S', so x is a limit point of S. Then every ϵ -neighborhood of x contains a point $y \neq x$ in S. Hence every ϵ -neighborhood of x contains a point in S. But every ϵ -neighborhood of x also contains x, which is a point not in S. Hence x is a boundary point of S. That is $x \in \partial S$, and hence $x \in S \cup \partial S$. So every $x \in S \cup S'$ is also in $S \cup \partial S$. This shows $S \cup S' \subseteq S \cup \partial S$. We can now conclude that $S \cup \partial S = S \cup S'$