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1. Let S and T be nonempty sets of real numbers and define

S − T = {s− t | s ∈ S, t ∈ T}.
Show that if S is bounded from above and T is bounded from below, then

sup(S − T ) = sup(S)− inf(T ).

(Hint: For ǫ > 0, prove that sup(S)− inf(T )− ǫ cannot be an upper bound of S−T because
sup(S)− ǫ/2 is not an upper bound of S and inf(T ) + ǫ/2 is not a lower bound of T .)

Since S is bounded from above, it has a supremum β. Similarly, T has an infimum γ.
First, we will show that β − γ is an upper bound for S − T . Let x ∈ S − T . Then x = s− t
for some s ∈ S and t ∈ T . We know s ≤ β and t ≥ γ. So

t ≥ γ =⇒ −t ≤ −γ =⇒ s− t ≤ s− γ ≤ β − γ

using the usual properties of <. So x ≤ β − γ for every x ∈ S − T .
Now, to show that β − γ is also the least upper bound for S − T , let ǫ > 0. We will show

that (β− γ)− ǫ cannot be an upper bound for S−T . First, since β is the least upper bound
for S, there must be some s0 ∈ S such that s0 > β − ǫ/2. Similarly, there must be a t0 ∈ T
such that t0 < γ + ǫ/2. Hence

t0 < γ +
ǫ

2
=⇒ −t0 > −γ − ǫ

2
=⇒ s0 − t0 > s0 − γ − ǫ

2
≤ β − ǫ

2
− γ − ǫ

2
= (β − γ)− ǫ.

So x0 = s0 − t0 is an element of S − T that is larger than (β − γ) − ǫ. Such an element of
S − T exists for each ǫ > 0. Hence β − γ is the supremum of S − T by Theorem 1.1.3.

2. (10 pts) The Fibonacci numbers {Fn}∞n=1 are are defined by F1 = F2 = 1 and

Fn+1 = Fn + Fn−1 for n ≥ 2.

Prove by induction that for n ≥ 1,

Fn =
(1 +

√
5)n − (1−

√
5)n

2n
√
5

.

Note that

F1 =
(1 +

√
5)− (1−

√
5)

2
√
5

=
2
√
5

2
√
5
= 1

and

F2 =
(1 +

√
5)2 − (1−

√
5)2

22
√
5

=
1 + 2

√
5 + 5− (1− 2

√
5 + 5)

4
√
5

=
2
√
5 + 2

√
5

4
√
5

= 1



This establishes the base case for n = 1 and n = 2. Now, suppose that the statement is true
for some n ≥ 2 and also for n− 1. Then

Fn+1 = Fn + Fn−1

=
(1 +

√
5)n − (1−

√
5)n

2n
√
5

+
(1 +

√
5)n−1 − (1−

√
5)n−1

2n−1
√
5

=
(1 +

√
5)n − (1−

√
5)n

2n
√
5

+
2(1 +

√
5)n−1 − 2(1−

√
5)n−1

2n
√
5

=
(1 +

√
5)n + 2(1 +

√
5)n−1 − (1−

√
5)n − 2(1−

√
5)n−1

2n
√
5

=
(1 +

√
5)n−1(1 +

√
5 + 2)− (1−

√
5)n−1(1−

√
5 + 2)

2n
√
5

=
(1 +

√
5)n−1(3 +

√
5)− (1−

√
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√
5)

2n
√
5
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Now, notice that

(1 +
√
5)2 = 1 + 2

√
5 + 5 = 2(3 +

√
5) =⇒ 3 +

√
5 =

(1 +
√
5)2

2

(1−
√
5)2 = 1− 2

√
5 + 5 = 2(3−

√
5) =⇒ 3−

√
5 =

(1−
√
5)2

2
.

Hence

Fn+1 =
(1 +

√
5)n−1 (1+

√
5)2

2 − (1−
√
5)n−1 (1−

√
5)2

2

2n
√
5

=
(1 +

√
5)n+1 − (1−

√
5)n+1

2n+1
√
5

,

exactly as we wanted to show.

3. (10 pts) Find
lim
x→4

√
x

and justify your answer with an ǫ− δ proof.

We will show that
lim
x→4

√
x = 2.

Let ǫ > 0. We need to prove that there is a δ > 0 such that |√x − 2|< ǫ whenever
0 < |x− 4|< δ. First, notice that

x− 4 =
√
x
2 − 22 = (

√
x+ 2)(

√
x− 2)

and so
|x− 4|= |(

√
x+ 2)(

√
x− 2)|= |

√
x+ 2||

√
x− 2|.

Now, if x is close to 4, then
√
x ≥ 0, so

√
x+ 2 ≥ 2. Hence we can divide by

√
x+ 2, as it is

not 0, to get

|
√
x− 2|= |x− 4|

|√x+ 2| .

Now if |x− 4|< δ then

|
√
x− 2|= |x− 4|

|√x+ 2| <
δ

|√x+ 2| .



Suppose δ ≤ 1, that is |x − 4|< 1. Then 3 < x < 5 and since the function g(x) =
√
x is

an increasing function,
√
3 <

√
x <

√
5. Hence

√
3 + 2 <

√
x + 2 <

√
5 + 2. In particular,√

x+ 2 is positive and therefore |√x+ 2|= √
x+ 2. So

δ

|√x+ 2| =
δ√
x+ 2

≤ δ

|
√
3 + 2|

.

This suggests that setting δ = min(1, (
√
3 + 2)ǫ) should be a good value for δ.

So let δ = min(1, (
√
3 + 2)ǫ). Then

δ ≤ 1

δ ≤ (
√
3 + 2)ǫ

are both true. Hence if |x− 4|< δ, then

|
√
x− 2| = |x− 4|

|√x+ 2|

<
δ

|√x+ 2|

≤ δ

|
√
3 + 2|

≤ (
√
3 + 2)ǫ

|
√
3 + 2|

= ǫ.

4. Let S be a subset of the real numbers.
(a) (2 pts) Define what a limit point of S is.

The number x ∈ R is a limit point of S if every deleted neighborhood of x contains
some point in S.

(b) (8 pts) Prove that S is closed if and only it contains all of its limit points.

First, let S be closed. Then Sc is open. If x ∈ Sc then x must be an interior point of Sc,
that is there is a neighborhood of x that lies in Sc. Such a neighborhood of x contains
no point in S, and therefore neither does the corresponding deleted neighborhood with
x removed. Therefore x cannot be a limit point of S. We have just shown that no point
of Sc can be a limit point of S. Therefore any limit point of S must be in S.
Conversely, suppose that S contains all of its limit points. We will show that Sc is open
and hence S is closed. Let x ∈ Sc. Since x is not in S, x cannot be a limit point of S.
Therefore there must exist a deleted neighborhood U of x which contains no point in
S. Since x itself is not in S, we can add x to U , and the neighborhood U ∪{x} of x will
not contain any point of S. Therefore U ∪ {x} lies in Sc. Thus x is an interior point of
Sc. We have just shown that any point x ∈ Sc is an interior point. Therefore Sc is an
open set.

5. (a) (4 pts) Let f be a function of real numbers and x0 ∈ R. Define what it means for f to
be left and right continuous at x0.

The function f is left continuous at x0 if

lim
x→x−

0

f(x) = f(x0)



and right continuous at x0 if

lim
x→x+

0

f(x) = f(x0).

(b) (6 pts) Give an example of a function f and x0 ∈ R such that f is left continuous but
not right continuous at x0. Be sure to fully justify your example.

One such example would be the piecewise-defined function

f(x) =

{

0 if x ≤ 0

1 if x > 0.

Then

lim
x→0−

f(x) = lim
x→0−

0 = 0 = f(0),

so f is left continuous at 0. On the other hand,

lim
x→0+

f(x) = lim
x→0+

1 = 1 6= f(0),

so f is not right continuous at 0.

6. (10 pts) Let f be a function of real numbers and x0 an interior point of its domain. Prove
that if f is differentiable at x0 then there exists a function E defined on some neighborhood
of x0 such that

E(x0) = 0 and lim
x→x0

E(x) = 0,

and

f(x) = f(x0) + f ′(x0)(x− x0) + E(x)(x− x0).

(Hint: Use the equation given for f(x) to define E(x).)

Suppose f is a function differentiable at x0. Then

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

exists. This means that for every ǫ > 0, there is a δ > 0 such that
∣

∣

∣

∣

f(x)− f(x0)

x− x0
− f ′(x0)

∣

∣

∣

∣

< ǫ

for every x such that 0 < |x− x0|< δ. In particular, this means that the number

f(x)− f(x0)

x− x0

exists whenever 0 < |x − x0|< δ. Pick any one such δ. For x in the δ-neighborhood of x0,
define

E(x) =

{

f(x)−f(x0)
x−x0

− f ′(x0) if x 6= x0

0 if x = x0
.

First, observe that if x 6= x0 then

f(x0) + f ′(x0)(x− x0) + E(x)(x− x0)

= f(x0) + f ′(x0)(x− x0) +

(

f(x)− f(x0)

x− x0
− f ′(x0)

)

(x− x0)

= f(x0) + f ′(x0)(x− x0) + f(x)− f(x0)− f ′(x0)(x− x0)

= f(x)



And if x = x0, then

f(x0) + f ′(x0)(x− x0) + E(x)(x− x0) = f(x0) + f ′(x0)(x0 − x0) + 0(x0 − x0) = f(x0).

So

f(x) = f(x0) + f ′(x0)(x− x0) + E(x)(x− x0)

does indeed hold for any x wherever E(x) is defined.
By definition, E(x0) = 0. The only thing that remains to show is that

lim
x→x0

E(x) = 0.

Since

E(x) =
f(x)− f(x0)

x− x0
− f ′(x0)

whenever x 6= x0,

lim
x→x0

E(x) = lim
x→x0

(

f(x)− f(x0)

x− x0
− f ′(x0)

)

= lim
x→x0

f(x)− f(x0)

x− x0
− lim

x→x0

f ′(x0)

= f ′(x0)− f ′(x0)

= 0

by using the limit laws (Theorem 2.1.4) and the fact that the limit of a constant function is
just the value of that function.

7. Extra credit problem. The Squeeze or Sandwich Theorem, which you may well have
learned in your calculus class, says that if f , g, and h are functions and x0 is an interior point
of their domains such that f(x) ≤ g(x) ≤ h(x) for every x in some deleted neighborhood of
x0 and

L = lim
x→x0

f(x) = lim
x→x0

h(x)

then
lim
x→x0

g(x) = L.

(a) (10 pts) Use a δ− ǫ argument to prove the Squeeze Theorem. (Hint: for an ǫ > 0, start
by showing there is a δ > 0 such that if x 6= x0 is closer to x0 than a distance of δ then
f(x) and h(x) are both within a distance of ǫ of L while g(x) must be between them.)

Let ǫ > 0. We need to show that there is a δ > 0 such that

|g(x)− L|< ǫ

whenever

0 < |x− x0|< δ.

First, since

L = lim
x→x0

f(x)

there is a δ1 > 0 such that

|f(x)− L|< ǫ

whenever

0 < |x− x0|< δ1.

Similarly, there is a δ2 > 0 such that

|h(x)− L|< ǫ



whenever
0 < |x− x0|< δ2.

Finally, it was given that there is a δ3 > 0 such that

f(x) ≤ g(x) ≤ h(x)

whenever
0 < |x− x0|< δ3.

Let δ = min(δ1, δ2, δ3) and let 0 < |x− x0|< δ. Then

0 < |x− x0|< δ1

0 < |x− x0|< δ2

0 < |x− x0|< δ3

are all true. Hence

|f(x)− L|< ǫ =⇒ L− ǫ < f(x) < L+ ǫ

and
|h(x)− L|< ǫ =⇒ L− ǫ < h(x) < L+ ǫ

and
f(x) ≤ g(x) ≤ h(x)

must also be true. Therefore

=⇒ L− ǫ < f(x) ≤ g(x) ≤ h(x) < L+ ǫ,

which shows that L− ǫ < g(x) < L+ ǫ. That is |g(x)−L|< ǫ whenever 0 < |x−x0|< δ.

(b) (5 pts) Instead of L = limx→x0
f(x) = limx→x0

h(x), suppose that

L1 = lim
x→x0

f(x) and L2 = lim
x→x0

h(x)

both exist and L1 ≤ L2. Can you conclude that

L1 ≤ lim
x→x0

g(x) ≤ L2?

If so, give a proof; if not, find a counterexample.

This is not true. For example, let

f(x) = −1

h(x) = 1

g(x) = sin

(

1

x

)

It is clear for any x 6= 0 that f(x) ≤ g(x) ≤ h(x). Also

lim
x→0

f(x) = −1 and lim
x→0

h(x) = 1

but we saw in class that
lim
x→0

g(x)

does not exist because no matter how close we look to 0, there will always be values of
x1 and x2 for which g(x1) = −1 and g(x2) = 1.


