MCS 221 EXAM 2 SOLUTIONS Nov 16, 2018

1. (10 pts) Suppose v_1, v_2, v_3, v_4 spans the vector space V. Prove that the list

$$v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$$

also spans V.

Let $v \in V$ be any vector. Since v_1, v_2, v_3, v_4 spans V, there exist scalars a_1, \ldots, a_4 such that

$$v = a_1 v_1 + a_2 v_2 + a_3 v_3 + a_4 v_4.$$

Substitute

$$v_3 = (v_3 - v_4) + v_4$$

$$v_2 = (v_2 - v_3) + (v_3 - v_4) + v_4$$

$$v_1 = (v_1 - v_2) + (v_2 - v_3) + (v_3 - v_4) + v_4$$

into the expression above to get

$$v = a_1((v_1 - v_2) + (v_2 - v_3) + (v_3 - v_4) + v_4)$$

$$+ a_2((v_2 - v_3) + (v_3 - v_4) + v_4) + a_3((v_3 - v_4) + v_4) + a_4v_4$$

$$= a_1(v_1 - v_2) + (a_1 + a_2)(v_2 - v_3) + (a_1 + a_2 + a_3)(v_3 - v_4)$$

$$+ (a_1 + a_2 + a_3 + a_4)v_4,$$

which is a linear combination of $v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$. Hence any $v \in V$ is in the span of $v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$.

2. (10 pts) Recall that $\mathcal{P}_m(F)$ is the vector space of polynomials of degree m or less over the field F. Suppose p_0, p_1, \ldots, p_m are polynomials in $\mathcal{P}_m(F)$ such that $p_j(2) = 0$ for each j. Prove that p_0, p_1, \ldots, p_m is not linearly independent.

Notice that if q is a linear combination of p_0, p_1, \ldots, p_m , that is $q = a_0 p_0 + a_m p_1 \cdots + a_m p_m$ then

$$q(2) = a_0 p_0(2) + a_1 p_1(2) \cdots + a_m p_m(2) = 0.$$

Now, let q(x) = 1. Since $q(2) \neq 0$, q is not a linear combination of p_0, p_1, \ldots, p_m . Consider the extended list p_0, p_1, \ldots, p_m, q . This list is too long to be linearly independent because it has m+2 elements, while $1, x, x^2, \ldots, x^m$ is a list of m+1 elements and it spans $\mathcal{P}_m(F)$, as we saw in class, and we know that a linearly independent list cannot be longer than a spanning list. So p_0, p_1, \ldots, p_m, q is linearly dependent. by the Linear Dependence Lemma, one of the polynomials must be a linear combination of the preceding ones. We already noted that q cannot be that polynomial, so it must be p_j for some j. But then p_0, p_1, \ldots, p_m is linearly dependent as the list contains a polynomial that is a linear combination of the others.

3. (10 pts) Solve the following system of linear equations by row-reducing its augmented matrix.

$$x_1 - 2x_2 - 3x_3 = -1$$
$$-7x_1 + 14x_2 + 6x_3 = 37$$
$$3x_1 - 6x_2 - 4x_3 = -13$$

$$\begin{pmatrix} 1 & -2 & -3 & -1 \\ -7 & 14 & 6 & 37 \\ 3 & -6 & -4 & -13 \end{pmatrix} \xrightarrow{7R_1 + R_2 \to R_2} \begin{pmatrix} 1 & -2 & -3 & -1 \\ 0 & 0 & -15 & 30 \\ 3 & -6 & -4 & -13 \end{pmatrix}$$

$$\xrightarrow{R_3 - 3R_1 \to R_3} \begin{pmatrix} 1 & -2 & -3 & -1 \\ 0 & 0 & -15 & 30 \\ 0 & 0 & 5 & -10 \end{pmatrix}$$

$$\xrightarrow{-\frac{1}{15}R_2 \to R_2} \begin{pmatrix} 1 & -2 & -3 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 5 & -10 \end{pmatrix}$$

$$\xrightarrow{R_3 - 5R_2 \to R_3} \begin{pmatrix} 1 & -2 & -3 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{3R_2 + R_1 \to R_1} \begin{pmatrix} 1 & -2 & 0 & -7 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

So

$$x_1 - 2x_2 = -7 \implies x_1 = 2x_2 - 7$$

 $x_3 = 2$

where $x_2 \in F$ is a free variable, that is x_2 is any element of F.

4. (10 pts) Let A be the coefficient matrix of the system of linear equations

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n.$$

Show that if the reduced row-echelon form of A is the identity matrix I_n then A has a left inverse, that is a matrix C such that $CA = I_n$.

This is because every elementary row operation corresponds to multiplication of the augmented matrix by an elementary matrix on the left. For example $7R_1 + R_2 \rightarrow R_2$ would correspond to multiplication by

$$\begin{pmatrix} 1 & & & \\ 7 & 1 & & \\ & & \vdots & \\ & & & 1 \end{pmatrix}.$$

Now, if there is a sequence of elementary row operations that reduces the coefficient matrix A to I_n , and the corresponding elementary matrices are E_1, E_2, \ldots, E_k , then

$$E_k E_{k-1} \cdots E_1 A = I_n.$$

Hence the matrix $C = E_k E_{k-1} \cdots E_1$ satisfies $CA = I_n$. That is C is a left inverse of A.

5. (10 pts) Extra credit problem. Let $V = \mathcal{P}_m(\mathbb{R})$ over the field \mathbb{R} and let

$$U = \{ p \in \mathcal{P}_m(\mathbb{R}) \mid p(2) = 0 \}.$$

It is easy to see that U is a subspace of V. Now, suppose the list p_1, p_2, \ldots, p_k spans U. Show that if $q \in V$ is any polynomial that is not in U, then the list p_1, p_2, \ldots, p_k, q spans V. (Hint: if r is any polynomial in V, first find a scalar c such that the polynomial r - cq has a value of 0 at 2, then express r - cq as a linear combination of p_1, p_2, \ldots, p_k .)

Let p_1, p_2, \ldots, p_k and q be as in the problem statement. We need to show that any polynomial $r \in \mathcal{P}_m(\mathbb{R})$ is a linear combination of p_1, p_2, \ldots, p_k, q . Since $q \notin U$, we must have $q(2) \neq 0$. Let a = q(2) and b = r(2). Since $a \neq 0$, we can divide b by a. Let c = b/a. Now,

$$(r - cq)(2) = r(2) - cq(2) = b - \frac{b}{a}a = 0.$$

Hence $r - cq \in U$ and

$$r - cq = a_1p_1 + a_2p_2 + \dots + a_kp_k$$

for some scalars a_1, \ldots, a_k . It follows that

$$r = a_1 p_1 + a_2 p_2 + \dots + a_k p_k + cq \in \text{span}(p_1, p_2, \dots, p_k, q).$$

This is true for any $r \in V$, therefore p_1, p_2, \ldots, p_k, q spans all of V.