1. (10 pts) Let F be a field and $b \in F$. Prove that

$$U = \left\{ (x_1, x_2, x_3, x_4) \in F^4 \mid x_3 = 5x_4 + b \right\}$$

is a subspace of F^4 if and only if b = 0.

Suppose U is a subspace. In this case, $0 \in U$, so the vector (0, 0, 0, 0) must satisfy $x_3 = 5x_4 + b$, that is 0 = 0 + b. Hence b = 0.

Conversely, suppose b = 0. Then (0, 0, 0, 0) satisfies $x_3 = 5x_4 + b$, hence $(0, 0, 0, 0) \in U$. Now, suppose (x_1, x_2, x_3, x_4) and (y_1, y_2, y_3, y_4) are in U, so $x_3 = 5x_4$ and $y_3 = 5y_4$. Then

$$x_3 + y_3 = 5x_4 + 5y_4 = 5(x_4 + y_4).$$

Hence

 $(x_1, x_2, x_3, x_4) + (y_1, y_2, y_3, y_4) = (x_1 + y_1, x_2 + y_2, x_3 + y_3, x_4 + y_4) \in U.$

Finally, suppose $(x_1, x_2, x_3, x_4) \in U$ and $a \in F$. Then $x_3 = 5x_4$, so $ax_3 = a(5x_4) = 5(ax_4)$, so

$$a(x_1, x_2, x_3, x_4) = (ax_1, ax_2, ax_3, ax_4) \in U.$$

Therefore U is closed under addition and scalar multiplication and contains 0, hence U is a subspace of F^4 .

2. (10 pts) Suppose U and W are subspaces of V such that $V = U \oplus W$. Suppose u_1, \ldots, u_m is a basis of U and w_1, \ldots, w_n is a basis of W. Prove that

$$u_1,\ldots,u_m,w_1,\ldots,w_n$$

is a basis of V.

We will first show that any vector in U+W is a linear combination of $u_1, \ldots, u_m, w_1, \ldots, w_n$. Let $v \in U+W$. So v = u + w for some $u \in U$ and $w \in W$. Since u_1, \ldots, u_m span U and w_1, \ldots, w_n span W, we can write

$$u = a_1 u_1 + \dots + a_m u_m$$
$$w = b_1 w_1 + \dots + b_n w_n$$

for some $a_1, \ldots, a_m, b_1, \ldots, b_n \in F$. Hence

$$v = a_1u_1 + \dots + a_mu_m + b_1w_1 + \dots + b_nw_n.$$

Now, to show that $u_1, \ldots, u_m, w_1, \ldots, w_n$ is linearly independent, suppose

 $a_1u_1 + \dots + a_mu_m + b_1w_1 + \dots + b_nw_n = 0.$

Then the vector

$$v = a_1u_1 + \dots + a_mu_m = -b_1w_1 - \dots - b_nw_r$$

is both in U and W. Since U + W is direct, $U \cap W = \{0\}$. So v = 0. Now, $a_i = 0$ for all i by the linear independence of u_1, \ldots, u_m and $b_j = 0$ for all j by the linear independence of w_1, \ldots, w_n .

3. (10 pts) Suppose $T \in \mathcal{L}(V, W)$ and v_1, \ldots, v_m is a list of vectors in V such that $T(v_1), \ldots, T(v_m)$ is a linearly independent list in W. Prove that v_1, \ldots, v_m is linearly independent.

Let a_1, \ldots, a_m be scalars such that

$$a_1v_1 + \dots + a_mv_m = 0.$$

Then

$$a_1T(v_1) + \dots + a_mT(v_m) = T(a_1v_1 + \dots + a_mv_m) = T(0) = 0.$$

Since $T(v_1), \ldots, T(v_m)$ is linearly independent, $a_1 = \cdots = a_m = 0$. Hence v_1, \ldots, v_m is linearly independent.

4. (a) (3 pts) State the definition of infinite-dimensional vector space.

A vector space V is infinite-dimensional if there is no finite list of vectors in V that spans V.

(b) (7 pts) Give an example of an infinite-dimensional vector space. Of course, you need to prove that your example satisfies the definition in part (a).

A good example is $\mathcal{P}(F)$ over any field F. See Example 2.16 in LADR for the proof that $\mathcal{P}(F)$ is infinite-dimensional.

5. (10 pts) Let

$$A = \begin{pmatrix} 2 & -1 & -2 \\ 1 & -2 & -7 \\ -3 & 2 & 5 \end{pmatrix}$$

and let $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ be the linear map T(v) = Av. Find null(T).

Since

$$\operatorname{null}(T) = \{ v \in \mathbb{R}^3 \mid T(v) = 0 \} = \{ v \in \mathbb{R}^3 \mid Av = 0 \}$$

we can find the null space by solving the homogeneous linear equation Av = 0. A good way to do this is by row-reducing the augmented matrix of the equation. Let

$$v = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)$$

so Av = 0 is the matrix equation

$$\begin{pmatrix} 2 & -1 & -2 \\ 1 & -2 & -7 \\ -3 & 2 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Then

$$\begin{pmatrix} 2 & -1 & -2 & 0 \\ 1 & -2 & -7 & 0 \\ -3 & 2 & 5 & 0 \end{pmatrix} \xrightarrow{3R_2 + R_3 \to R_3} \begin{pmatrix} 2 & -1 & -2 & 0 \\ 1 & -2 & -7 & 0 \\ 0 & -4 & -16 & 0 \end{pmatrix}$$
$$\xrightarrow{-2R_2 + R_1 \to R_1} \begin{pmatrix} 0 & 3 & 12 & 0 \\ 1 & -2 & -7 & 0 \\ 0 & -4 & -16 & 0 \end{pmatrix}$$
$$\xrightarrow{\frac{1}{3}R_1 \to R_1} \begin{pmatrix} 0 & 1 & 4 & 0 \\ 1 & -2 & -7 & 0 \\ 0 & -4 & -16 & 0 \end{pmatrix}$$

That is

$$x_1 + x_3 = 0 \implies x_1 = -x_3$$
$$x_2 + 4x_3 = 0 \implies x_2 = -4x_3$$

where $x_3 \in \mathbb{R}$ is a free variable, that is x_3 is any real number. So

$$\operatorname{null}(T) = \left\{ \left. \begin{pmatrix} -a \\ -4a \\ a \end{pmatrix} \right| a \in \mathbb{R} \right\},\$$

or

$$\operatorname{null}(T) = \operatorname{span} \left(\begin{array}{c} -1\\ -4\\ 1 \end{array} \right).$$

6. (10 pts) State and prove the Fundamental Theorem of Linear Maps.

See Theorem 3.22 in LADR.

- 7. Extra credit problem. Let V and W be finite-dimensional vector spaces over the field F, and let $T \in \mathcal{L}(V, W)$.
 - (a) (5 pts) Suppose U is also a vector space over F and $S \in \mathcal{L}(U, V)$ such that TS is surjective. Prove that T must be surjective.

That TS is surjective means that for any $w \in W$ is in range(TS), that is there exists a $u \in U$ such that TS(u) = W. Let v = S(u). Then w = T(v), which shows $w \in \text{range}(T)$. This is true for any $w \in W$, so range(T) = W. Hence T is surjective.

(b) (10 pts) Prove that T has a right inverse $S \in \mathcal{L}(W, V)$ such that $TS = I_W$ if and only if T is surjective.

First, suppose T has a right inverse S. Then $TS = I_W$, which is obviously surjective. Hence T is surjective by part (a).

Now, suppose T is surjective. We will construct an $S \in \mathcal{L}(W, V)$ such that $TS = I_w$. First, since W is finite-dimensional, we can choose a basis w_1, \ldots, w_n for W. Since T is surjective, for each w_i there is a $v_i \in V$ such that $T(v_i) = w_i$. By Theorem 3.5, there is a linear map $S: W \to V$ such that $S(w_i) = v_i$ for each i. We will show $TS = I_W$. Let w be any vector in W. Then there exist $a_1, \ldots, a_n \in F$ such that $w = a_1w_1 + \cdots + a_nw_n$.

$$TS(w) = TS(a_1w_1 + \dots + a_nw_n)$$

= $a_1TS(w_1) + \dots + a_nTS(w_n)$
= $a_1w_1 + \dots + a_nw_n$
= w

since $TS(w_i) = T(S(w_i)) = T(v_i) = w_i$ for each *i*. We conclude $TS = I_W$.