
Linear Equations, Matrices, and Vectors

Here is a quick review of what we have learned about linear equations in the last couple of weeks.
Let F be any infinite field. Let us start with the system of linear equations

a11x1 + a12x2 + · · · a1nxn = b1

a21x1 + a22x2 + · · · a2nxn = b2

...

am1x1 + am2x2 + · · · amnxn = bm

where the coefficients aij and bi and the variables xi are all in F . In fact, all scalars will be in the
same field F , so I will stop saying this.

The m× n matrix

A =











a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn











is called the coefficient matrix, while the m× (n+ 1) matrix

(A|b) =











a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
...

am1 am2 . . . amn bn











is called the augmented matrix of the equation. The notation (A|b) comes from writing the scalars
bi in a column vector

b =











b1
b2
...
bn











.

We have learned that we can solve such a linear equation by row reduction (aka Gaussian elimina-
tion), which is just the matrix version of solving a system of linear equations by eliminination. We
do this by performing the three kinds of elementary row operations

• multiplying a row by a nonzero scalar,
• adding a scalar multiple of a row to another row,
• switching two rows

on the augmented matrix until it is in reduced row-echelon form (see handout from Section 1.2 of
Anton for a complete description of what reduced row-echelon form means).

We have learned to recognize when a system of linear equations has a unique solution. If it does,
the reduced row-echelon form of the augmented matrix has an n× n identity matrix in the upper
left part, possibly followed by rows of 0s if m > n. When the linear equation does not have a
unique solution, the reduced row-echelon form of the augmented matrix has a more general shape:
the leading 1s in the rows may not line up along the diagonal and there may be entries that are
neither 0 nor 1 in the upper right part of the matrix. In this case, there could be infinitely many
solutions or no solutions at all, which will depend on what the vector b is. If there is a row whose
first n entries are 0 and the entry in the last column is nonzero, then there is no solution because
such a row would correspond to the equation

0x1 + 0x2 + · · ·+ 0xn = bi

1



for some bi 6= 0, which clearly has no solution. Otherwise, one or more of the variables x1, . . . , xn is
a free variable, i.e. its value could be anything in F . This means there are infinitely many solutions.

We have also learned to write the linear equation above in matrix-vector form as










a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn





















x1
x2
...
xn











=











b1
b2
...
bn











or

Ax = b,

where x is the column vector

x =











x1
x2
...
xn











.

We saw that each elementary row operation corresponds to multiplying the augmented matrix
by an elementary matrix. If E1, E2, . . . , Ek are the elementary matrices that correspond to the
consecutive steps in the row-reduction, and C = EkEk−1 · · ·E1, then multiplying the augmented
matrix (A|b) by C does the same thing as the whole row-reduction. So C(A|b) is the reduced row-
echelon form of the augmented matrix, and CA is the reduced row-echelon form of the coefficient
matrix A.

Now, if A is an n× n matrix, then we know that

• If CA = In, then

C(A|b) =











1 0 · · · 0 d1
0 1 · · · 0 d2
...

...
...

0 0 · · · 1 dn











,

where di is the i-th entry of the column vector d = Cb. This corresponds to the equations

x1 = d1

x2 = d2

...

xn = dn.

That is the equation has a unique solution in this case. Notice that C only depends on the
coefficient matrix A and the matrix multiplication Cb can be done no matter what b is. So
the equation would have a unique solution for any choice of the vector b ∈ Fn.

• Conversely, if the linear equation has a unique solution, then solving it by elimination should
give some result of the form

x1 = d1

x2 = d2

...

xn = dn.
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This means the reduced-row echelon form of the augmented matrix must look like

C(A|b) =











1 0 · · · 0 d1
0 1 · · · 0 d2
...

...
...

0 0 · · · 1 dn











.

We can conclude CA must be the identity matrix In in this case.

Hence a system of n linear equations in n variables has a unique solution if and only if its coefficient
matrix can be row-reduced to the identity In.

We have pointed out that elementary row operations on a matrix take linear combinations of the
rows of that matrix. In fact, if C is as above, CA is a matrix that consists of linear combinations
of the row vectors of A. For example, the first row of CA would be the vector

c11a1∗ + c12a2∗ + · · ·+ c1nan∗

where

ai∗ = (ai1, ai2, . . . , ain)

is the i-th row of A. So if an n× n matrix A can be row-reduced to the identity matrix, then the
row vectors of the identity matrix

e1 = (1, 0, · · · , 0)

e2 = (0, 1, · · · , 0)

...

en = (0, 0, · · · , 1)

can be expressed as linear combinations of the rows a1∗, . . . , an∗:

e1 = c11a1∗ + c12a2∗ + · · ·+ c1nan∗

e2 = c21a1∗ + c22a2∗ + · · ·+ c2nan∗

...

en = cn1a1∗ + cn2a2∗ + · · ·+ cnnan∗

Now, since every vector v = (v1, v2, . . . , vn) ∈ Fn can be expressed as a linear combination of
e1, . . . , en, namely

v = v1e1 + v2e2 + · · ·+ vnen,

it can also be expressed as a linear combination of a1∗, . . . , an∗ by replacing each ei by ei =
ci1a1∗ + ci2a2∗ + · · · + cinan∗ above. That is the row vectors of A span Fn. Now, if the row
vectors a1∗, . . . , an∗ span Fn then they also form a basis of Fn since there are exactly dim(Fn) = n

of them. This means they must be linearly independent. We can reverse this argument: if the
rows of A are linearly independent then they form a basis of Fn, hence they span Fn, hence each
element ei of the standard basis is a linear combination of the rows of A:

ei = ci1a1∗ + ci2a2∗ + · · ·+ cinan∗

for some coefficients cij . Now if C is the matrix (cij) then CA = In. So we have just proved

Theorem 1. If A ∈ Mn×n(F ) then the following are equivalent:

(a) A has a left inverse C ∈ Mn×n(F ) such that CA = In.
(b) The rows of A span Fn.
(c) The rows of A are linearly independent.
(d) The rows of A form a basis of Fn.
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Note that if A can be row-reduced to In then it satisfies all of the statements in the theorem
above. We will show soon that the converse is also true: if A satisfies the statements in the theorem
above, then it can be row-reduced to In.

Another way to view the original linear equation is as

x1











a11
a21
...
an1











+ x2











a12
a22
...
an2











+ · · ·+ xn











a1n
a2n
...
ann











=











b1
b2
...
bn











.

That is we are looking for coefficients x1, . . . , xn to express the vector b as a linear combination of
the column vectors a∗1, a∗2, . . . , a∗n of A. We noted earlier that if A is an n×n matrix that can be
row-reduced to In, then the equation Ax = b has a unique solution for any choice of b. This means
that every vector in Fn is a linear combination of the column vectors of A, that is the column
vectors of A span Fn. If so, the column vectors of A form a basis of Fn since dim(Fn) = n. Hence
they are also linearly independent. Also, since every vector in Fn is in the span of the column
vectors of A, in particular, the elements of the standard basis

e1 =















1
0
0
...
0















, e2 =















0
1
0
...
0















, . . . , en =















0
0
...
0
1















can all be expressed as linear combinations of the columns of A as

ej = d1ja∗1 + d2ja∗2 + · · ·+ dnja∗n

for some coefficients d1j , . . . , dnj . If D is the matrix (dij) then AD = In, that is D is a right inverse
of A. Just like with the rows and the left inverse, this argument also works in reverse. So we now
have

Theorem 2. If A ∈ Mn×n(F ) then the following are equivalent:

(a) A has a right inverse D ∈ Mn×n(F ) such that AD = In.
(b) The columns of A span Fn.
(c) The columns of A are linearly independent.
(d) The columns of A form a basis of Fn.

Now, note that we can solve any of the linear equations










a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn





















d1j
d2j
...
dnj











= ej

by row reducing the augmented matrix (A|ej). In fact, we can solve all of them at the same time
by row-reducing the augmented matrix

(A|In) =











a11 a12 . . . a1n 1 0 . . . 0
a21 a22 . . . a2n 0 1 . . . 0
...

...
...

...
am1 am2 . . . amn 0 0 . . . 1











.

If A can be row-reduced to In, then the result of row-reducing (A|In) is a matrix (In|D) such that
AD = In. Now we know that if A can be row-reduced to In then it satisfies the statements in
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both Theorems 1 and 2. Let us call a square matrix that can row-reduced to In nonsingular and
a square matrix that cannot be row-reduced to In singular.

We have just learned that a nonsingular square matrix A has both a left inverse C and a right
inverse D. In fact, these must be equal because

C = CIn = C(AD) = (CA)D = InD = D,

where we used the fact that matrix multiplication is associative. That is a nonsingular square
matrix has an inverse. In fact, the proof above also shows that the inverse is unique.

The same way we can row-reduce a matrix, we can also column-reduce it by doing elementary
column operations:

• multiplying a column by a nonzero scalar,
• adding a scalar multiple of a column to another column,
• switching two columns.

Such column operations correspond to multiplying A by corresponding elementary matrices on the
right.

We can of course make the analogous arguments about column-reduction as about row-reduction.
That is a square matrix that can be column-reduced to In also has an inverse, and both its rows
and columns are bases of Fn. We could find the left inverse (and hence the inverse) of such a
matrix A by column-reducing the augmented matrix



























a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn

1 0 . . . 0
0 1 . . . 0
...

...
0 0 . . . 1



























.

Now, let A ∈ Mn×n(F ) such that A has a right inverse D. Then the column vectors of A span
Fn. Let T ∈ L(Fn, Fn) be the linear map

T (x) = Ax.

As we noted above Ax is a linear combination of the columns of A. Then

range(T ) = {T (x) | x ∈ Fn} = {Ax | x ∈ Fn} = span(a∗1, a∗2, . . . , a∗n) = Fn.

By the Fundamental Theorem of Linear Maps

dim(Fn) = dim(null(T )) + dim(range(T )).

Since dim(Fn) = dim(range(T )) = n, we find that dim(null(T )) = 0. That is null(T ) = {0}. This
means that the only solution of the homogeneous linear equation Ax = 0 is x = 0. As we already
noted above, this means that solving this equation by row-reducing the augmented matrix (A|0)
must result in (In|0). That is A is a nonsingular matrix. By Theorem 1, A has a left inverse as well.
That is a square matrix that has a right inverse also has a left inverse and hence has an inverse.
By symmetry, a square matrix that has a left inverse must also be nonsingular and must therefore
have a right inverse and a two-sided inverse as well. This nicely completes what we know about
linear equations, matrices, and row and column-reduction. We can summarize it as

Theorem 3. Let A ∈ Mn×n(F ). Then the following are equivalent:

(a) A can be row-reduced to In.
(b) A can be column-reduced to In.
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(c) A has a left inverse C ∈ Mn×n(F ) such that CA = In.
(d) A has a right inverse D ∈ Mn×n(F ) such that AD = In.
(e) A has an inverse A−1 ∈ Mn×n(F ) such that AA−1 = A−1A = In.
(f) The rows of A span Fn.
(g) The columns of A span Fn.
(h) The rows of A are linearly independent.
(i) The columns of A are linearly independent.
(j) The rows of A form a basis of Fn.
(k) The columns of A form a basis of Fn.

A square matrix that has an inverse is called invertible. We have learned that square matrices
that are invertible are exactly those that are nonsingular.

Let me note for the sake of completeness that all of the above works the same if F is a finite
field, such as Zn, but instead of infinitely many solutions, some linear equations would have more
than one but finitely many solutions, as a free variable would have finitely many different values.
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