
MCS 221 Introduction to complex numbers

Lecture notes for MCS 221

We will define the set of complex numbers and investigate some of their algebraic properties.

Definition 1. Define i to be a number (necessarily not real) such that i2 = −1. The set of complex
numbers is

C = {x+ yi | x, y ∈ R}.
Define addition on C as

(x+ yi) + (a+ bi) = (x+ a) + (y + b)i

and multiplication as
(x+ yi)(a+ bi) = (xa− yb) + (xb+ ya)i.

The latter complicated-looking formula comes from using the distributive property to multiply
x+ yi and a+ bi:

(x+ yi)(a+ bi) = xa+ x(bi) + (yi)a+ (yi)(bi)

= xa+ (xb)i+ (ya)i+ (yb)i2

= xa+ (xb+ ya)i− yb

= (xa− yb) + (xb+ ya)i.

where we also used commutativity and associativity of multiplication to rearrange the terms. Of
course, there is no good reason to assume that multiplication has the same commutative, associative,
and distributive properties on C as it has on R. It is more that we wish it should and define addition
and multiplication accordingly. In fact, it remains to be verified that these common properties of
addition and multiplication are still satisfied on C.

But first, let us convince ourselves that addition and multiplication are operations on C, that
is the sum and product of two complex numbers are still in the set C. This is quite obvious from
the above definitions. If x + yi and a + bi are complex numbers, then x, y, a, and b must be real
numbers. So x+ a and y + b are also real numbers and hence

(x+ yi) + (a+ bi) = (x+ a) + (y + b)i ∈ C.

Verifying that (x+ yi)(a+ bi) ∈ C is similar. I will leave it to you to do it.
Now, back to commutativity and associativity. Let x+ yi and a+ bi be complex numbers. Then

x, y, a, b ∈ R. Now

(x+ yi) + (a+ bi) = (x+ a) + (y + b)i

(a+ bi) + (x+ yi) = (a+ x) + (b+ y)i

and these are equal to each other since x+a = a+x and y+b = b+y be the commutative property
of addition on real numbers. I will leave it to you to verify that addition of complex numbers is
also associative and that multiplication is both commutative and associative.

Similarly, you can verify by direct computation that multiplication is distributive over addition,
that is if x+ yi, a+ bi, and c+ di are complex numbers then

(x+ yi)
(

(a+ bi) + (c+ di)
)

= (x+ yi)(a+ bi) + (x+ yi)(c+ di).

By commutativity of multiplication it also follows that
(

(a+ bi) + (c+ di)
)

(x+ yi) = (a+ bi)(x+ yi) + (c+ di)(x+ yi).

It is similarly easy to check that 0 + 0i works as an additive identity and 1 + 0i works as a
multiplicative identity. (Go ahead and do it.) In fact, since 0i = 0, the additive identity and the
multiplicative identity are the usual numbers 0 and 1 you know and love in R. This is a good



time to point out that any real number x is also a complex number, as you can always write it as
x = x+ 0i. This shows that R ⊂ C.

That each complex number has an additive inverse is also an easy fact to verify. The obvious
candidate for −(x+ yi) is −x+ (−y)i. Can you see that

(x+ yi) +
(

− x+ (−y)i
)

= 0 and
(

− x+ (−y)i
)

+ (x+ yi) = 0?

What about multiplicative inverses? Those are a little more difficult to obtain. Let z = x + yi

be a complex number. Then w = a+ bi is a multiplicative inverse of z if

1 = zw = (x+ yi)(a+ bi) = (xa− yb) + (xb+ ya)i.

This implies

xa− yb = 1

xb+ ya = 0

Multiply the first equation by x and the second by y to get

x2a− xyb = x

yxb+ y2a = 0

Now add them:

x+ 0 = x2a− xyb+ yxb+ y2a = (x2 + y2)aimpliesa =
x

x2 + y2
,

as long as x2 + y2 6= 0. Similarly, multiplying the first equation by −y and the second by x and
then adding them yields

(y2 + x2)b = −y =⇒ b =
−y

x2 + y2
,

as long as x2 + y2 6= 0. Notice that the only way x2 + y2 = 0 is if x = y = 0, which would make
z = 0. So if z 6= 0,

w =
x

x2 + y2
+

−y

x2 + y2
i

is a multiplicative inverse of z. This means that every nonzero element z of C has a multiplicative
inverse. We will refer to

x

x2 + y2
+

−y

x2 + y2
i

as z−1.
Finally, we need to verify 0 6= 1 in C. To do so, we need to define what it means for two complex

numbers z = x+ yi and w = a+ bi to be equal. To motivate the definition, note that

z = w =⇒ x+ yi = a+ bi =⇒ x− a = bi− yi = (b− y)i.

Now, if b− y 6= 0, then

i =
x− a

b− y
∈ R.

But we defined i to be a number such that i2 = −1 and no real number can possibly satisfy this
equation. So i cannot be a real number and therefore b− y must be 0. So y = b. But then

x− a = bi− yi = (b− y)i = 0i = 0 =⇒ x = a.

Technically, we made a few leaps of faith in the above argument–if you don’t see what they are,
that’s alright–, so instead of accepting the result as a fact we proved, I will state it as a definition:

Definition 2. If z = x+ yi and w = a+ bi are complex numbers, we say z = w if x = a and y = b.



Now it should be clear that
0 = 0 + 0i 6= 1 + 0i = 1.

We can conclude that C with addition and multiplication as defined above is a field. Note that as
usual, you can define subtraction in C by

z − w = z + (−w)

for any z, w ∈ C and division by
z

w
= zw−1

for any z, w ∈ C such that w 6= 0.
It it time to introduce some handy terminology:

Definition 3. If z = x + yi is a complex number, then the real part of z is Re(z) = x and the
imaginary part of z is Im(z) = y. If Re(z) = 0 then we call z an imaginary number.

Note that the imaginary part of a complex number is a real number.

Definition 4. The (complex) conjugate of a complex number z = x+ yi is

z = x− yi.

For example, 3 + 4i = 3 − 4i. To relate this to something you are already familiar with, recall
that you learned in algebra class to rationalize a fraction whose denominator had a square root in
it by multiplying the numerator and the denominator by the conjugate, such as

3

5 +
√
8
=

3

5 +
√
8

5−
√
8

5−
√
8
=

3(5−
√
8)

52 −
√
8
2

=
5−

√
8

5−
√
8
=

3(5−
√
8)

25− 8
=

3(5−
√
8)

17
.

Now, if you think of i as
√
−1 then it should make sense that we call z = x− yi = x− y

√
−1 the

conjugate of z = x+ yi = x+ y
√
−1.

It may not be immediately clear why we would want to define z, but note that

zz = (x+ yi)(x− yi) = x2 + y2

is a nonnegative real number and that

z

zz
=

x− yi

x2 + y2
=

x

x2 + y2
+

−y

x2 + y2
i = z−1.

So we have an easy way or memorizing how to calculate z−1. Fun fact: a complex number z is a
real number if and only if z = z. Can you see why?

Here are a few useful properties of conjugation:

w + z = w + z

w − z = w − z

wz = w z

w

z
=

w

z

Re z =
z + z

2

Im z =
z − z

2i

for any w, z ∈ C. You can easily verify these.
There is a nice geometric way to visualize complex numbers as points in a plane. Start with the

usual 2-dimensional Euclidean plane, i.e. the xy-plane you know well from calculus class. Consider
the x-axis the real number line and the y-axis a line that contains the imaginary numbers of the



form yi where y ∈ R. Now the complex number z = x+yi is just the point (x, y) in this coordinate
plane. E.g.
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Notice that the real number line is part of the complex plane. Addition and subtraction of complex
numbers are easy to visualize in this setting by arrows:

x

y

3

1

4
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2

3+2i+(2−i)=5+i

2−i

2−i
3+2i

(3+2i)−(2−i)

Multiplication and division also have geometric interpretations, but they are less obvious. I will
not talk about them here. Conjugation has a nice a geometric meaning as reflection across the real
axis:
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Finally, notice

zz = (x+ yi)(x− yi) = x2 + y2

is the square of the usual Euclidean distance of z from the origin. In fact, this deserves its own
definition:

Definition 5. For a complex number z = x+ yi, the absolute value or magnitude or length of z is

|z| =
√

x2 + y2 =
√
zz.



Notice that just like the absolute value of real numbers, |z| ≥ 0 for every z ∈ C; and in fact,
|z| = 0 only if z = 0. Much like on R, the absolute value has the following useful properties:

| − z| = |z|
|wz| = |w||z|
∣

∣

∣

w

z

∣

∣

∣
=

|w|
|z|

|w + z| ≤ |w|+ |z|
|w − z| ≤ |w|+ |z|

for all w, z ∈ C. The first three of these are straightforward to show by direct calculation. The
third property |w + z| ≤ |w| + |z| is called the Triangle Inequality. You can probably see why by
looking back at the diagram above that shows the geometric meaning of w + z. It is a little more
challenging to prove, but not really difficult. In fact, the diagram of w + z in the complex plane
should make it intuitively clear that equality

|w + z| = |w|+ |z|
holds if and only if w and z are arrows that point in the same direction.

That should be enough or more than enough to let you get by in MCS-221. I will say a few
more things about complex numbers, just to whet your appetite for learning about them. We do
not need these in MCS-221 at this point and you may ignore them if you would like.

A really neat property of complex numbers is that every polynomial of degree n with complex
coefficients factors as a product of linear factors. This also means that such a polynomial has
exactly n roots, although some of them may be equal to each other, in which case you need to
count them with multiplicities. This is called the Fundamental Theorem of Algebra. Compare
this with polynomials with real coefficients. Some do factor as a product of linear factors, e.g.
x2 − 5x + 4 = (x − 1)(x − 4). Others do not, e.g. x2 + 1. But over C, even x2 + 1 factors as
(x+ i)(x− i).

You can also define many of the functions you are already familiar with over the complex numbers,
such as exponential functions, logarithmic functions, and trigonometric functions. Then you can
do calculus with them. These functions are related in interesting ways over the complex numbers.
E.g.

sin(z) =
eiz − eiz

2i

cos(z) =
eiz + eiz

2

tan(z) =
eiz − eiz

eiz + eiz

These make it quite easy to understand and prove standard formulas from calculus, such as

d

dz
sin(z) = cos(z) and

d

dz
cos(z) = − sin(z).

If you find these intriguing, you may want to check out MCS-321, Elementary Theory of Complex
Variables.


