
MCS 221 Exam 1 Solutions

1. (10 pts) Let F be any field. Define addition and scalar multiplication on V = Fn as usual.
Show that λ(x+ y) = λx+ λy for all λ ∈ F and all x, y ∈ Fn.

Let x, y ∈ Fn. So x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) where xi, yi ∈ F for all i.
Now

λ(x+ y) = λ
(

(x1, x2, . . . , xn) + (y1, y2, . . . , yn)
)

= λ(x1 + y1, x2 + y2, . . . , xn + yn)

=
(

λ(x1 + y1), λ(x2 + y2), . . . , λ(xn + yn)
)

Also

λx+ λy = λ(x1, x2, . . . , xn) + λ(y1, y2, . . . , yn)

= (λx1, λx2, . . . , λxn) + (λy1, λy2, . . . , λyn)

= (λx1 + λy1, λx2 + λy2, . . . , λxn + λyn)

Since multiplication in F is distributive over addition, λ(xi+ yi) = λxi+λyi for all i. Hence
λ(x+ y) = λx+ λy.

2. (10 pts) Let ∞ and −∞ denote two distinct objects, neither of which is in R. Define an
addition and scalar multiplication on R∪{∞}∪{−∞} as you could guess from the notation.
Specifically, the sum and product of two real numbers is as usual, and for t ∈ R define

t∞ =











−∞ if t < 0,

0 if t = 0,

∞ if t > 0,

t(−∞) =











∞ if t < 0,

0 if t = 0,

−∞ if t > 0,

t+∞ = ∞+ t = ∞, t+ (−∞) = (−∞) + t = −∞,

∞+∞ = ∞, (−∞) + (−∞) = −∞, ∞+ (−∞) = 0.

Is R ∪ {∞} ∪ {−∞} a vector space over R? Explain.

R ∪ {∞,−∞} is not a vector space because addition is not associative. E.g.

(1 +∞) + (−∞) = ∞+ (−∞) = 0

1 +
(

∞) + (−∞)
)

= 1 + 0 = 1,

and these are not equal.

In fact, it is interesting to note that R ∪ {∞,−∞} with the addition and scalar multipli-
cation defined above satisfies all of the other properties of a vector space.

3. (5 pts each) Let V = R
2 over the field R. Are the following sets subspaces of V ?

(a) U = {(x, y) ∈ R
2 | x2 = y2}

U is not a subspace because it is not closed under addition. For example, u = (1, 1) and
v = (−1, 1) are both in U , since 12 = 12 and (−1)2 = 12. But u+ v = (0, 2) is not in U

because 02 6= 22.

(b) U = {(x, y) ∈ R
2 | xy ≥ 0}

This is not a subspace either because it is not closed under addition. For example,
u = (2, 2) and v = (−1,−3) are both in U , since 2 · 2 = 4 ≥ 0 and (−1)(−3) = 3 ≥ 0.
But u+ v = (1,−1) is not in U because 1(−1) = −1 < 0.



4. Let V be a vector space. Let U1, U2, . . . , Un be subspaces of V .
(a) (3 pts) State the definition of the sum U1 + U2 + · · ·+ Un.

This is Definition 1.36 in your textbook:

U1 + U2 + · · ·+ Un = {u1 + u2 + · · ·+ un | u1 ∈ U1, u2 ∈ U2, . . . , un ∈ Un}.

(b) (7 pts) Prove that U1 + U2 + · · ·+ Un is a subspace of V .

This is part of Theorem 1.39 in your textbook. Let U = U1+U2+ · · ·+Un. First, notice
that if u ∈ U , then u = u1 + u2 + · · · + un for some ui ∈ Ui. Since ui is also in V for
all i, and V is a vector space, hence closed under addition, u = u1 + u2 + · · ·+ un ∈ V .
This is true for all u ∈ U . So U ⊆ V .
Now, 0 = 0 + 0 + · · ·+ 0 ∈ U1 + U2 + · · ·+ Un. Let u, v ∈ U . Then

u = u1 + u2 + · · ·+ un, v = v1 + v2 + · · ·+ vn

for some ui, vi ∈ Ui. Hence

u+ v = (u1 + u2 + · · ·+ un) + (v1 + v2 + · · ·+ vn)

= (u1 + v1) + (u2 + v2) + · · ·+ (un + vn)

where we used associativity and commutativity of addition to rearrange the sum. Since
each Ui is a subspace, it is closed under addition, so ui+ vi ∈ Ui. This shows u+ v ∈ U .
Now let λ ∈ F . Then

λu = λ(u1 + u2 + · · ·+ un) = λu1 + λu2 + · · ·+ λun

by distributivity. Each λui ∈ Ui by closure under scalar multiplication. Therefore
λu ∈ U . By Theorem 1.34, U is a subspace of V .

5. Extra credit problem.

(a) (6 pts) Let F be a field. Show that if x and y are nonzero elements of F then xy 6= 0.

By way of contradiction, suppose xy = 0. Since x 6= 0, it has a multiplicative inverse
x−1 in F . Multiply both sides of xy = 0 by x−1 and use associativity of multiplication
to get

x−10 = x−1(xy) = (x−1x)y = 1y = y.

In a field, much like in a vector space, x−10 = 0. We can show this the same way as in
a vector space:

x−10 = x−1(0 + 0) = x−10 + x−10,

and now we can add the additive inverse of x−10, call it z, to both sides:

0 = x−10 + z = (x−10 + x−10) + z = x−10 + (x−10 + z) = x−10 + 0 = x−10.

Hence y = x−10 = 0, which contradicts y 6= 0. Therefore xy cannot be 0.

Note that if it feels like these are the same arguments we gave in class for proving
Theorem 1.30 and you may have given on your homework for exercise 1.B.2, that is no
coincidence. They are the same arguments. This is because any field is a vector space
over itself, using the same field addition and multiplication as the vector space addition
and scalar multiplication. So Theorem 1.30 applied to the vector space F over the field
F does in fact show that any element times 0 is 0. We could have simply cited Theorem
1.30 here instead of giving the argument above. In the specific context of F over F ,
exercise 1.B.2 says exactly the same thing as this problem on this exam.



(b) (4 pts) Use the result in part (a) to prove that Zn (the integers modulo n with the usual
addition and multiplication) cannot be a field if n is a composite number.

Let n be a composite number. Then n = km for some integers 1 < k,m < n. Notice
that k and m cannot be divisible by n (because 1 < k,m < n), so k and m are not equal
to 0 in Zn. But km = n = 0. We just showed in part (a) that this cannot happen in a
field, therefore Zn cannot be a field.


