MCS 221 FINAL EXAM SOLUTIONS May 24, 2019

1. (10 pts) Let V be a vector space. Is the operation of addition on the subspaces of V associative? In other words, if U_1, U_2, U_3 are subspaces of V, is

$$(U_1 + U_2) + U_3 = U_1 + (U_2 + U_3)?$$

(Hint: remember that two sets A and B are equal if $A \subseteq B$ and $B \subseteq A$.)

Yes, it is. We will show that $(U_1 + U_2) + U_3 = U_1 + (U_2 + U_3)$. First, let *u* be any element in $(U_1 + U_2) + U_3$. Then $u = (u_1 + u_2) + u_3$ for some $u_1 \in U_1$, $u_2 \in U_2$, and $u_3 \in U_3$. Hence

$$u = (u_1 + u_2) + u_3 = u_1 + (u_2 + u_3) \in U_1 + (U_2 + U_3).$$

Hence $(U_1 + U_2) + U_3 \subseteq U_1 + (U_2 + U_3)$. By an analogous argument, $U_1 + (U_2 + U_3) \subseteq (U_1 + U_2) + U_3$.

2. (10 pts) Let V be a vector space. Suppose U_1, \ldots, U_m are finite-dimensional subspaces of V such that $U_1 + \cdots + U_m$ is a direct sum. Prove that $U = U_1 \oplus \cdots \oplus U_m$ is finite-dimensional and

$$\dim(U_1 \oplus \cdots \oplus U_m) = \dim(U_1) + \cdots + \dim(U_m).$$

Note that this is almost the same problem as the extra credit problem on our second midterm. In fact, by that problem, combining bases of U_1, \ldots, U_m results in a basis of $U_1 \oplus \cdots \oplus U_m$. Hence the dimension of $U_1 \oplus \cdots \oplus U_m$ is the sum of the dimensions of U_1, \ldots, U_m . It follows that $U_1 \oplus \cdots \oplus U_m$ is finite-dimensional. For the sake of completeness, here is the whole argument, which includes the proof of the extra credit problem on the second midterm.

Since each U_i is finite-dimensional, it has a basis $u_{i1}, u_{i2}, \ldots, u_{in_i}$ where $n_i = \dim(U_i)$. We will prove that the combined list

$$u_{11}, u_{12}, \ldots, u_{1n_1}, u_{21}, u_{22}, \ldots, u_{2n_2}, \ldots, u_{m1}, u_{m2}, \ldots, u_{mn_m}$$

is a basis of $U_1 \oplus \cdots \oplus U_m$.

1

First, we will show that any $v \in U_1 + \cdots + U_m$ is a linear combination of the combined list of u_{ij} . Since $v \in U_1 + \cdots + U_m$,

$$v = v_1 + v_2 + \cdots + v_m$$

for some $v_i \in U_i$. Now, each such v_i is a linear combination

$$v_i = a_{i1}u_{i1} + \dots + a_{in_i}u_{in_i}$$

for some scalars a_{i1}, \ldots, a_{in_i} . Therefore

$$v = a_{11}u_{11} + \dots + a_{1n_1}u_{1n_1} + \dots + a_{m1}u_{m1} + \dots + a_{mn_m}u_{mn_m},$$

so v is in the span of the combined list of u_{ij} .

Now, we will show that the combined list of u_{ij} is linearly independent. Let

$$0 = a_{11}u_{11} + \dots + a_{1n_1}u_{1n_1} + \dots + a_{m1}u_{m1} + \dots + a_{mn_m}u_{mn_m}$$

Let $v_i = a_{i1}u_{i1} + \cdots + a_{in_i}u_{in_i} \in U_i$. Then

$$0 = v_1 + \cdots + v_m.$$

Since $U_1 \oplus \cdots \oplus U_m$ is direct, the only way to express 0 as a sum $0 = v_1 + \cdots + v_m$ with each $v_i \in U_i$ is that each $v_i = 0$. Now,

$$0 = v_i = a_{i1}u_{i1} + \dots + a_{in_i}u_{in_i}.$$

Since $u_{i1}, u_{i2}, \ldots, u_{in_i}$ is a basis of U_i , and hence linearly independent, $a_{ij} = 0$ for all $j = 1, \ldots, n_i$. Therefore all of the a_{ij} above must be 0, which proves that the combined list of u_{ij} is linearly independent.

Now, the list

$$u_{11}, u_{12}, \ldots, u_{1n_1}, u_{21}, u_{22}, \ldots, u_{2n_2}, \ldots, u_{m1}, u_{m2}, \ldots, u_{mn_m}$$

has $n_1 + n_2 + \cdots + n_m$ elements, so

$$\dim(U_1 \oplus \cdots \oplus U_m) = n_1 + n_2 + \cdots + n_m = \dim(U_1) + \cdots + \dim(U_m).$$

Many of you tried to give a proof by induction. This works but there are two important parts of the argument one needs to be careful about. I will point them out. Here is how such an argument would go.

For the base case, note that if m = 1 then the statement is $\dim(U_1) = \dim(U_1)$, which is obviously true.

For the inductive hypothesis, suppose that if U_1, \ldots, U_k are finite-dimensional subspaces of V such that $U_1 + \cdots + U_k$ is a direct sum then

$$\dim(U_1 \oplus \cdots \oplus U_k) = \dim(U_1) + \cdots + \dim(U_k).$$

Now, let U_1, \ldots, U_{k+1} be finite-dimensional subspaces of V such that $U_1 + \cdots + U_{k+1}$ is direct. Let $W = U_1 + \cdots + U_k$. Then

$$U_1 + \dots + U_{k+1} = (U_1 + \dots + U_k) + U_{k+1} = W + U_{k+1}$$

by problem 1 on this exam. The first subtle part of this argument is that we need to prove that $W + U_{k+1}$ is a direct sum. We will show that if $w \in W$ and $u_{k+1} \in U_{k+1}$ are such that $w + u_{k+1} = 0$ then $w = u_{k+1} = 0$, and hence $W + U_{k+1}$ is direct by Theorem 1.44. Since $w \in W = U_1 + \cdots + U_k$, $w = u_1 + \cdots + u_k$ for some $u_i \in U_i$. Then

$$0 = w + u_{k+1} = (u_1 + \dots + u_k) + u_{k+1} = u_1 + \dots + u_{k+1}.$$

But $U_1 + \cdots + U_{k+1}$ is direct, so $u_1 = \cdots = u_{k+1} = 0$, which implies w = 0 in turn. Since $W + U_{k+1}$ is direct, $W \cap U_{k+1} = \{0\}$. By Theorem 2.43,

$$\dim(U_1 + \dots + U_{k+1}) = \dim(W + Uk + 1)$$

= dim(W) + dim(U_{k+1}) - dim(W \cap U_{k+1})
= dim(W) + dim(U_{k+1}).

We are now ready to use the inductive hypothesis to replace $\dim(W)$ by $\dim(U_1) + \cdots + \dim(U_k)$ in this equation. But for that, we need to know that $W = U_1 + \cdots + U_k$ is a direct sum. We do know that $U_1 + \cdots + U_{k+1}$ is a direct sum. We will show that it follows that $U_1 + \cdots + U_k$ is also direct. Let $u_i \in U_i$ for $i = 1, \ldots, k$ such that $0 = u_1 + \cdots + u_k$. Then

$$0 = u_1 + \dots + u_k + \underbrace{0}_{\in U_{k+1}} \in U_1 + \dots + U_{k+1}$$

and since $U_1 + \cdots + U_{k+1}$ is direct, the only way to write 0 as a sum of vectors from each U_i is if all those vectors are 0 (by Theorem 1.44). Hence $u_1 = \cdots = u_k = 0$. Therefore $U_1 + \cdots + U_k$ is also a direct sum (by Theorem 1.44 once again). Now, by the inductive hypothesis,

$$\dim(U_1 + \dots + U_{k+1}) = \dim(W) + \dim(U_{k+1})$$

= $\dim(U_1) + \dots + \dim(U_k) + \dim(U_{k+1}),$

which is what we wanted to prove.

3. (10 pts) Suppose S_1, \ldots, S_n are injective linear maps such that $S_1 S_2 \cdots S_n$ makes sense. Prove that $S_1 S_2 \cdots S_n$ is injective.

Let v be such that $S_1, \ldots, S_n(v) = 0$. We will show that v = 0. So

$$0 = S_1 \cdots S_n(v) = S_1 \big(S_2 \cdots S_n(v) \big).$$

Since S_1 is injective, its null space is $\{0\}$, so $S_2 \cdots S_n(v) = 0$. Now

$$0 = S_2 \cdots S_n(v) = S_2 \big(S_3 \cdots S_n(v) \big).$$

Since S_2 is injective, its null space is $\{0\}$, so $S_3 \cdots S_n(v) = 0$. And so on until we find that v = 0. This shows 0 is the only vector in the null space of $S_1 \cdots S_n$, so $S_1 \cdots S_n$ is injective.

4. (10 pts) Find the inverse of the matrix

$$A = \left(\begin{array}{rrrr} 2 & 5 & 3 \\ 1 & 3 & 0 \\ -4 & -15 & 8 \end{array}\right)$$

using row reduction.

$$\begin{pmatrix} 2 & 5 & 3 & 1 & 0 & 0 \\ 1 & 3 & 0 & 0 & 1 & 0 \\ -4 & -15 & 8 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 3 & 0 & 0 & 1 & 0 \\ 2 & 5 & 3 & 1 & 0 & 0 \\ -4 & -15 & 8 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{R_2 - 2R_1 \to R_2} \begin{pmatrix} 1 & 3 & 0 & 0 & 1 & 0 \\ 0 & -1 & 3 & 1 & -2 & 0 \\ -4 & -15 & 8 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{R_3 + 4R_1 \to R_2} \begin{pmatrix} 1 & 3 & 0 & 0 & 1 & 0 \\ 0 & -1 & 3 & 1 & -2 & 0 \\ 0 & -3 & 8 & 0 & 4 & 1 \end{pmatrix}$$

$$\xrightarrow{-R_2 \to R_2} \begin{pmatrix} 1 & 3 & 0 & 0 & 1 & 0 \\ 0 & 1 & -3 & -1 & 2 & 0 \\ 0 & 0 & -1 & -3 & 10 & 1 \end{pmatrix}$$

$$\xrightarrow{-R_3 \to R_3} \begin{pmatrix} 1 & 3 & 0 & 0 & 1 & 0 \\ 0 & 1 & -3 & -1 & 2 & 0 \\ 0 & 0 & -1 & -3 & 10 & 1 \end{pmatrix}$$

$$\xrightarrow{-R_3 \to R_3} \begin{pmatrix} 1 & 3 & 0 & 0 & 1 & 0 \\ 0 & 1 & -3 & -1 & 2 & 0 \\ 0 & 0 & -1 & -3 & 10 & 1 \end{pmatrix}$$

$$\xrightarrow{-R_3 \to R_3} \begin{pmatrix} 1 & 3 & 0 & 0 & 1 & 0 \\ 0 & 1 & -3 & -1 & 2 & 0 \\ 0 & 0 & 1 & 3 & -10 & -1 \end{pmatrix}$$

$$\xrightarrow{-R_1 \to 2R_3 \to R_3} \begin{pmatrix} 1 & 3 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 8 & -28 & -3 \\ 0 & 0 & 1 & 3 & -10 & -1 \end{pmatrix}$$

$$\xrightarrow{-R_1 \to 2R_3 \to R_3} \begin{pmatrix} 1 & 0 & 0 & -24 & 85 & 9 \\ 0 & 1 & 0 & 8 & -28 & -3 \\ 0 & 0 & 1 & 3 & -10 & -1 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} -24 & 85 & 9 \\ 9 & -28 & -3 \\ 3 & -10 & -1 \end{pmatrix}$$

So

5. (10 pts) Let F be a field. Prove that a matrix $A \in M_{n \times n}(F)$ is nonsingular if and only if it is row-equivalent to the identity matrix $I_n \in M_{n \times n}(F)$.

This is Theorem NMRRI on p. 68 of Beezer. We proved it in class as part of NME1.

First suppose A is row-equivalent to I_n . Then the augmented matrix (A|0) is rowequivalent to the augmented matrix $(I_n|0)$. Row-equivalent augmented matrices correspond to equivalent systems of linear equations (by Theorem REMES in Beezer). So Ax = 0 has exactly the same solutions as $I_n x = 0$. Since $I_n x = x$, the only solution of $I_n x = 0$ is x = 0. Hence the only solution of Ax = 0 is the trivial solution x = 0. Therefore A is nonsingular.

Conversely, suppose that A is nonsingular. The homogeneous linear equation Ax = 0 can be solved by row reducing the augmented matrix (A|0) to (B|0) where B is a matrix that is row-equivalent to A and is in reduced row-echelon form. Since A is nonsingular, the only solution of Ax = 0 is x = 0. Hence x = 0 is also the only solution of Bx = 0. This means all n variables x_1, \ldots, x_n are determined. So B must have n pivot columns. But B has exactly n columns, so all of its columns must be pivot columns. The only way this is possible is if $B = I_n$. Hence A is row-equivalent to I_n .

6. (a) (4 pts) Let $T \in \mathcal{L}(V)$. Define what an eigenvalue of T is.

A scalar λ is an *eigenvalue* of T if there is a nonzero $v \in V$ such that $T(v) = \lambda v$.

(b) (6 pts) Give an example of vector space V over \mathbb{R} and a linear map $T \in \mathcal{L}(V)$ that has an eigenvalue of 2 and an eigenvalue of -2.

Let
$$V = \mathbb{R}^2$$
 and $T(x, y) = (2x, -2y)$. Then
 $T(1, 0) = (2, 0) = 2(1, 0)$ and $T(0, 1) = (0, -2) = -2(0, 1)$.

So 2 and -2 are both eigenvalues of T.

Quite a few of you tried to construct an example with $V = \mathbb{R}$. This cannot possibly work. We proved that eigenvectors corresponding to distinct eigenvalues of T form a linearly independent list. Since 2 and -2 are distinct eigenvalues, the corresponding eigenvectors form a linearly independent list of length 2. Hence the dimension of Vmust be at least 2.

7. Extra credit problem.

(a) (5 pts) Let F be a field. Prove that a matrix $A \in M_{n \times n}(F)$ has a left inverse if the rows of the matrix span F^n .

Suppose that the rows of A span F^n . Then every vector in F^n is a linear combination of the rows. In particular, the vectors $e_1 = (1, 0, ..., 0), ..., e_n = (0, ..., 0, 1)$ in the standard basis of F^n can be expressed as

$$e_i = b_{i1}A_{1*} + b_{i2}A_{2*} + \dots + b_{in}A_{n*}$$

where A_{k*} is the k-th row of A. Let B be the $n \times n$ matrix whose (i, j) entry is b_{ij} . Then BA is the matrix whose i-th row is exactly $b_{i1}A_{1*} + b_{i2}A_{2*} + \cdots + b_{in}A_{n*} = e_i$, so $BA = I_n$. Hence B is a left inverse of A.

(b) (10 pts) Let V and W be vector spaces over the same field F and let T be a linear map in $\mathcal{L}(V, W)$. Recall that a linear map $S \in \mathcal{L}(W, V)$ is called a right inverse of T if TS is the identity map $I_W \in \mathcal{L}(W)$. Now suppose that V is finite-dimensional. Prove that T has a right inverse if and only if T is surjective. First, suppose T has a right inverse $S \in \mathcal{L}(W, V)$. Let w be any element of W. Then v = S(w) is a vector in V such that T(v) = w. So $w \in \operatorname{range}(T)$. Hence $\operatorname{range}(T) = W$, so T is surjective.

Now, suppose T is surjective. Since V is finite-dimensional, it has a basis v_1, \ldots, v_n . By the surjectivity of T, for any $w \in W$ there is a $v \in V$ such that T(v). We can express v as a linear combination $v = a_1v_1 + \cdots + a_nv_n$. Now

$$w = T(v) = T(a_1v_1 + \dots + a_nv_n) = a_1T(v_1) + \dots + a_nT(v_n).$$

This shows that any vector $w \in W$ is in the span of $T(v_1), \ldots, T(v_n)$. Since this spanning list is finite, W must be finite-dimensional. Hence we can choose a basis w_1, \ldots, w_m for W. For each w_i there is a vector $v_i \in V$ such that $T(v_i) = w_i$. By Theorem 3.5, there is a linear map $S \in \mathcal{L}(W, V)$ such that $S(w_i) = v_i$ for i. We will show that TS(w) = wfor all $w \in W$. Let $w \in W$. Then w can be expressed as $w = a_1w_1 + \cdots + a_mw_m$. So

$$TS(w) = TS(a_1w_1 + \dots + a_mw_m)$$

= $a_1TS(w_1) + \dots + a_mTS(w_m)$
= $a_1T(v_1) + \dots + a_mT(v_m)$
= $a_1w_1 + \dots + a_mw_m$
= w .

Therefore $TS = I_w$.