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1. (10 pts) Let V be a vector space. Is the operation of addition on the subspaces of V

associative? In other words, if U1, U2, U3 are subspaces of V , is

(U1 + U2) + U3 = U1 + (U2 + U3)?

(Hint: remember that two sets A and B are equal if A ⊆ B and B ⊆ A.)

Yes, it is. We will show that (U1 +U2)+U3 = U1 +(U2 +U3). First, let u be any element
in (U1 + U2) + U3. Then u = (u1 + u2) + u3 for some u1 ∈ U1, u2 ∈ U2, and u3 ∈ U3. Hence

u = (u1 + u2) + u3 = u1 + (u2 + u3) ∈ U1 + (U2 + U3).

Hence (U1 + U2) + U3 ⊆ U1 + (U2 + U3). By an analogous argument, U1 + (U2 + U3) ⊆
(U1 + U2) + U3.

2. (10 pts) Let V be a vector space. Suppose U1, . . . , Um are finite-dimensional subspaces of V
such that U1 + · · ·+Um is a direct sum. Prove that U = U1 ⊕ · · · ⊕Um is finite-dimensional
and

dim(U1 ⊕ · · · ⊕ Um) = dim(U1) + · · ·+ dim(Um).

Note that this is almost the same problem as the extra credit problem on our second
midterm. In fact, by that problem, combining bases of U1, . . . , Um results in a basis of
U1 ⊕ · · · ⊕ Um. Hence the dimension of U1 ⊕ · · · ⊕ Um is the sum of the dimensions of
U1, . . . , Um. It follows that U1⊕· · ·⊕Um is finite-dimensional. For the sake of completeness,
here is the whole argument, which includes the proof of the extra credit problem on the
second midterm.

Since each Ui is finite-dimensional, it has a basis ui1, ui2, . . . , uini
where ni = dim(Ui). We

will prove that the combined list

u11, u12, . . . , u1n1
, u21, u22, . . . , u2n2

, . . . , um1, um2, . . . , umnm

is a basis of U1 ⊕ · · · ⊕ Um.
First, we will show that any v ∈ U1 + · · · + Um is a linear combination of the combined

list of uij . Since v ∈ U1 + · · ·+ Um,

v = v1 + v2 + · · · vm

for some vi ∈ Ui. Now, each such vi is a linear combination

vi = ai1ui1 + · · ·+ aini
uini

for some scalars ai1, . . . , aini
. Therefore

v = a11u11 + · · ·+ a1n1
u1n1

+ · · ·+ am1um1 + · · ·+ amnm
umnm

,

so v is in the span of the combined list of uij .
Now, we will show that the combined list of uij is linearly independent. Let

0 = a11u11 + · · ·+ a1n1
u1n1

+ · · ·+ am1um1 + · · ·+ amnm
umnm

.

Let vi = ai1ui1 + · · ·+ aini
uini

∈ Ui. Then

0 = v1 + · · · vm.

Since U1 ⊕ · · · ⊕ Um is direct, the only way to express 0 as a sum 0 = v1 + · · · vm with each
vi ∈ Ui is that each vi = 0. Now,

0 = vi = ai1ui1 + · · ·+ aini
uini

.



Since ui1, ui2, . . . , uini
is a basis of Ui, and hence linearly independent, aij = 0 for all j =

1, . . . , ni. Therefore all of the aij above must be 0, which proves that the combined list of
uij is linearly independent.

Now, the list

u11, u12, . . . , u1n1
, u21, u22, . . . , u2n2

, . . . , um1, um2, . . . , umnm

has n1 + n2 + · · ·+ nm elements, so

dim(U1 ⊕ · · · ⊕ Um) = n1 + n2 + · · ·+ nm = dim(U1) + · · ·+ dim(Um).

Many of you tried to give a proof by induction. This works but there are two important
parts of the argument one needs to be careful about. I will point them out. Here is how such
an argument would go.

For the base case, note that if m = 1 then the statement is dim(U1) = dim(U1), which is
obviously true.

For the inductive hypothesis, suppose that if U1, . . . , Uk are finite-dimensional subspaces
of V such that U1 + · · ·+ Uk is a direct sum then

dim(U1 ⊕ · · · ⊕ Uk) = dim(U1) + · · ·+ dim(Uk).

Now, let U1, . . . , Uk+1 be finite-dimensional subspaces of V such that U1 + · · · + Uk+1 is
direct. Let W = U1 + · · ·+ Uk. Then

U1 + · · ·+ Uk+1 = (U1 + · · ·+ Uk) + Uk+1 = W + Uk+1

by problem 1 on this exam. The first subtle part of this argument is that we need to prove
that W + Uk+1 is a direct sum. We will show that if w ∈ W and uk+1 ∈ Uk+1 are such that
w + uk+1 = 0 then w = uk+1 = 0, and hence W + Uk+1 is direct by Theorem 1.44. Since
w ∈ W = U1 + · · ·+ Uk, w = u1 + · · ·+ uk for some ui ∈ Ui. Then

0 = w + uk+1 = (u1 + · · ·+ uk) + uk+1 = u1 + · · ·+ uk+1.

But U1 + · · ·+ Uk+1 is direct, so u1 = · · · = uk+1 = 0, which implies w = 0 in turn.
Since W + Uk+1 is direct, W ∩ Uk+1 = {0}. By Theorem 2.43,

dim(U1 + · · ·+ Uk+1) = dim(W + Uk + 1)

= dim(W ) + dim(Uk+1)− dim(W ∩ Uk+1)

= dim(W ) + dim(Uk+1).

We are now ready to use the inductive hypothesis to replace dim(W ) by dim(U1) + · · · +
dim(Uk) in this equation. But for that, we need to know that W = U1 + · · ·+ Uk is a direct
sum. We do know that U1 + · · · + Uk+1 is a direct sum. We will show that it follows that
U1 + · · ·+ Uk is also direct. Let ui ∈ Ui for i = 1, . . . , k such that 0 = u1 + · · ·+ uk. Then

0 = u1 + · · ·+ uk + 0
︸︷︷︸

∈Uk+1

∈ U1 + · · ·+ Uk+1

and since U1 + · · · + Uk+1 is direct, the only way to write 0 as a sum of vectors from each
Ui is if all those vectors are 0 (by Theorem 1.44). Hence u1 = · · · = uk = 0. Therefore
U1 + · · · + Uk is also a direct sum (by Theorem 1.44 once again). Now, by the inductive
hypothesis,

dim(U1 + · · ·+ Uk+1) = dim(W ) + dim(Uk+1)

= dim(U1) + · · ·+ dim(Uk) + dim(Uk+1),

which is what we wanted to prove.



3. (10 pts) Suppose S1, . . . , Sn are injective linear maps such that S1S2 · · ·Sn makes sense.
Prove that S1S2 · · ·Sn is injective.

Let v be such that S1, . . . , Sn(v) = 0. We will show that v = 0. So

0 = S1 · · ·Sn(v) = S1

(
S2 · · ·Sn(v)

)
.

Since S1 is injective, its null space is {0}, so S2 · · ·Sn(v) = 0. Now

0 = S2 · · ·Sn(v) = S2

(
S3 · · ·Sn(v)

)
.

Since S2 is injective, its null space is {0}, so S3 · · ·Sn(v) = 0. And so on until we find that
v = 0. This shows 0 is the only vector in the null space of S1 · · ·Sn, so S1 · · ·Sn is injective.

4. (10 pts) Find the inverse of the matrix

A =





2 5 3
1 3 0

−4 −15 8





using row reduction.





2 5 3 1 0 0
1 3 0 0 1 0

−4 −15 8 0 0 1




R1↔R2−−−−−−−−−−−−→





1 3 0 0 1 0
2 5 3 1 0 0

−4 −15 8 0 0 1





R2−2R1→R2−−−−−−−−−−−−→





1 3 0 0 1 0
0 −1 3 1 −2 0

−4 −15 8 0 0 1





R3+4R1→R2−−−−−−−−−−−−→





1 3 0 0 1 0
0 −1 3 1 −2 0
0 −3 8 0 4 1





−R2→R2−−−−−−−−−−−−→





1 3 0 0 1 0
0 1 −3 −1 2 0
0 −3 8 0 4 1





3R2+R3→R3−−−−−−−−−−−−→





1 3 0 0 1 0
0 1 −3 −1 2 0
0 0 −1 −3 10 1





−R3→R3−−−−−−−−−−−−→





1 3 0 0 1 0
0 1 −3 −1 2 0
0 0 1 3 −10 −1





R2+3R3→R2−−−−−−−−−−−−→





1 3 0 0 1 0
0 1 0 8 −28 −3
0 0 1 3 −10 −1





R1−3R2→R1−−−−−−−−−−−−→





1 0 0 −24 85 9
0 1 0 8 −28 −3
0 0 1 3 −10 −1





So

A−1 =





−24 85 9
9 −28 −3
3 −10 −1







5. (10 pts) Let F be a field. Prove that a matrix A ∈ Mn×n(F ) is nonsingular if and only if it
is row-equivalent to the identity matrix In ∈ Mn×n(F ).

This is Theorem NMRRI on p. 68 of Beezer. We proved it in class as part of NME1.
First suppose A is row-equivalent to In. Then the augmented matrix (A|0) is row-

equivalent to the augmented matrix (In|0). Row-equivalent augmented matrices correspond
to equivalent systems of linear equations (by Theorem REMES in Beezer). So Ax = 0 has
exactly the same solutions as Inx = 0. Since Inx = x, the only solution of Inx = 0 is x = 0.
Hence the only solution of Ax = 0 is the trivial solution x = 0. Therefore A is nonsingular.

Conversely, suppose that A is nonsingular. The homogeneous linear equation Ax = 0 can
be solved by row reducing the augmented matrix (A|0) to (B|0) where B is a matrix that
is row-equivalent to A and is in reduced row-echelon form. Since A is nonsingular, the only
solution of Ax = 0 is x = 0. Hence x = 0 is also the only solution of Bx = 0. This means all
n variables x1, . . . , xn are determined. So B must have n pivot columns. But B has exactly
n columns, so all of its columns must be pivot columns. The only way this is possible is if
B = In. Hence A is row-equivalent to In.

6. (a) (4 pts) Let T ∈ L(V ). Define what an eigenvalue of T is.

A scalar λ is an eigenvalue of T if there is a nonzero v ∈ V such that T (v) = λv.

(b) (6 pts) Give an example of vector space V over R and a linear map T ∈ L(V ) that has
an eigenvalue of 2 and an eigenvalue of −2.

Let V = R
2 and T (x, y) = (2x,−2y). Then

T (1, 0) = (2, 0) = 2(1, 0) and T (0, 1) = (0,−2) = −2(0, 1).

So 2 and −2 are both eigenvalues of T .

Quite a few of you tried to construct an example with V = R. This cannot possibly
work. We proved that eigenvectors corresponding to distinct eigenvalues of T form a
linearly independent list. Since 2 and −2 are distinct eigenvalues, the corresponding
eigenvectors form a linearly independent list of length 2. Hence the dimension of V
must be at least 2.

7. Extra credit problem.

(a) (5 pts) Let F be a field. Prove that a matrix A ∈ Mn×n(F ) has a left inverse if the rows
of the matrix span Fn.

Suppose that the rows of A span Fn. Then every vector in Fn is a linear combination
of the rows. In particular, the vectors e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) in the
standard basis of Fn can be expressed as

ei = bi1A1∗ + bi2A2∗ + · · ·+ binAn∗

where Ak∗ is the k-th row of A. Let B be the n × n matrix whose (i, j) entry is bij .
Then BA is the matrix whose i-th row is exactly bi1A1∗ + bi2A2∗ + · · ·+ binAn∗ = ei, so
BA = In. Hence B is a left inverse of A.

(b) (10 pts) Let V and W be vector spaces over the same field F and let T be a linear map
in L(V,W ). Recall that a linear map S ∈ L(W,V ) is called a right inverse of T if TS is
the identity map IW ∈ L(W ). Now suppose that V is finite-dimensional. Prove that T
has a right inverse if and only if T is surjective.



First, suppose T has a right inverse S ∈ L(W,V ). Let w be any element of W . Then
v = S(w) is a vector in V such that T (v) = w. So w ∈ range(T ). Hence range(T ) = W ,
so T is surjective.
Now, suppose T is surjective. Since V is finite-dimensional, it has a basis v1, . . . , vn. By
the surjectivity of T , for any w ∈ W there is a v ∈ V such that T (v). We can express v
as a linear combination v = a1v1 + · · ·+ anvn. Now

w = T (v) = T (a1v1 + · · ·+ anvn) = a1T (v1) + · · ·+ anT (vn).

This shows that any vector w ∈ W is in the span of T (v1), . . . , T (vn). Since this spanning
list is finite, W must be finite-dimensional. Hence we can choose a basis w1, . . . , wm for
W . For each wi there is a vector vi ∈ V such that T (vi) = wi. By Theorem 3.5, there
is a linear map S ∈ L(W,V ) such that S(wi) = vi for i. We will show that TS(w) = w

for all w ∈ W . Let w ∈ W . Then w can be expressed as w = a1w1 + · · ·+ amwm. So

TS(w) = TS(a1w1 + · · ·+ amwm)

= a1TS(w1) + · · ·+ amTS(wm)

= a1T (v1) + · · ·+ amT (vm)

= a1w1 + · · ·+ amwm

= w.

Therefore TS = Iw.


