
MCS 222 Exam 2 Solutions

May 1, 2020

1. (5 pts each)
(a) Describe the geometric meaning of the following mapping (r, θ, z) 7→ (−r, θ − π/4, z) in

cylindrical coordinates. Be sure to justify your answer.

The mapping (r, θ) 7→ (−r, θ) in polar coordinates would reverse the direction of a
position vector in the xy-plane. That is it is a reflection across the origin. Or it can
be viewed as a 180◦ rotation about the origin. By extension, the mapping (r, θ, z) 7→
(−r, θ, z) is a 180◦ rotation about the z-axis. Similarly, the mapping (r, θ, z) 7→ (r, θ −
π/4, z) is a 45◦ rotation about the z-axis in the negative direction, that is clockwise. The
composition of these two mappings is exactly (r, θ, z) 7→ (−r, θ − π/4, z), which must
then be either a 180◦ − 45◦ = 135◦ rotation about the z-axis in the positive direction,
that is counterclockwise, or a 180◦+45◦ = 225◦ rotation about the z-axis in the negative
direction, that is clockwise.

(b) Describe a hemisphere of diameter 5 units using inequalities. State the coordinate
system used.

This can be done in any coordinate system, but the easiest one to use is spherical
coordinates. In those, 0 ≤ ρ ≤ 5/2 describes a sphere of radius 5/2 or diameter 5
centered at the origin. To make it a hemisphere, we can either restrict θ to half its usual
range, that is 0 ≤ θ ≤ π, or we can restrict φ to half its usual range, that is 0 ≤ φ ≤ π/2.
So both

0 ≤ ρ ≤
5

2
, 0 ≤ θ ≤ π, 0 ≤ φ ≤ π

and

0 ≤ ρ ≤
5

2
, 0 ≤ θ < 2π, 0 ≤ φ ≤

π

2
describe hemispheres of diameter 5, although not the same ones. Note that the latter
can also be written more concisely as

0 ≤ ρ ≤
5

2
, 0 ≤ φ ≤

π

2

since any value of θ would be equivalent to some value between 0 and 2π anyway.
In cylindrical coordinates, r2 + z2 ≤ (5/2)2 would describe a sphere of radius 5/2 or
diameter 5 centered at the origin. To make it a hemisphere, we can either restrict θ to
half its usual range, that is

r2 + z2 ≤ (5/2)2, 0 ≤ θ ≤ π

or we could take the upper half of the sphere by restricting z to be nonnegative:

0 ≤ r ≤
5

2
, 0 ≤ θ < 2π, 0 ≤ z ≤

√

25

4
− r2.

In Cartesian coordinates, x2 + y2 + z2 ≤ (5/2)2 would be a sphere of radius 5/2 or
diameter 5 centered at the origin. To take half of it, we could let

−
5

2
≤ x ≤

5

2
,−

√

25

4
− x2 ≤ y ≤

√

25

4
− x2, 0 ≤ z ≤

√

25

4
− x2 − y2

to describe the half that is above the xy-plane.



2. (a) (7 pts) Sketch level sets of values c = 0, 1, 4, 9 for both f(x, y) = x2 + y2 and g(x, y) =
√

x2 + y2.

The level sets of both f and g are circles centered at the origin. The difference is that
in the case of f , the levels c = 0, 1, 4, 9 correspond to circles x2 + y2 = 0, x2 + y2 = 1,
x2+y2 = 4, and x2+y2 = 9, that is circles of radii 0, 1, 2, 3, while in the case of g, these
levels correspond to circles x2 + y2 = 0, x2 + y2 = 1, x2 + y2 = 16, and x2 + y2 = 81,
that is circles of radii c = 0, 1, 4, 9. In other words, a circle of radius r centered at the
origin is the level set of level r2 for f , but the same circle is the level set of level r for g.
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(b) (3 pts) How are the graphs of f and g different? (Hint: think carefully about what the
spacing of the level curves you found in part (a) tells you about how steeply the surfaces
rise?)

The level curves are circles centered at the origin in both cases. But in the case of f , the
circle of radius r, x2 + y2 = r2 corresponds to level c = r2, whereas in the case of g, the
same circle corresponds to level c = r. Another way to look at it is that in the case of
f , the circles that correspond to the levels c = 0, 1, 4, 9 are of radii 0, 1, 2, 3, whereas in
the case of g, the circles that correspond to the levels c = 0, 1, 4, 9 are of radii 0, 1, 4, 9.
Either way we look at it, it is apparent that the graph of f increases with the square
of the distance of (x, y) from the origin, whereas the graph of g increases linearly with
that distance. So the graph of f is a paraboloid, while the graph of g is an upside down
cone.

3. (10 pts) Let r be a positive real number and x0 an element of Rn. Prove that the open disk
of radius r centered at x0

Dr(x0) = {x ∈ R
n | ||x− x0|| < r}

is an open subset of Rn.

See Theorem 1 in Section 2.2.

4. (a) (4 pts) Let f : Rn → R and x = (x1, . . . , xn) an point in R
n. State the definition of the

partial derivative ∂f
∂xi

.



∂f

∂xi
= lim

h→0

f(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f(x1, . . . , xn)

h

(b) (6 pts) Recall that R+ is the set of positive real numbers. Let S = {(x, y, z) | x, y, z ∈
R
+} ⊆ R

3 and let f : S → R be the function

f(x, y, z) = 2xz − sin
(y

z

)

.

Find all of the partial derivatives of f . You do not need to use the definition of the
derivative to find the partial derivatives.

Keeping two of the variables constant and using the usual rules of single variable differ-
entiation to differentiate with respect to the third, we get

∂f

∂x
= 2zxz−1

∂f

∂y
= − cos

(y

z

) 1

z

∂f

∂z
= 2xz ln(x)− cos

(y

z

)

y(−z−2) = 2xz ln(x) +
y

z2
cos

(y

z

)

5. (10 pts) Extra credit problem. Let f : Rn → R≥0 be the function f(x) = ||x||. That is f
maps a vector x to its length. Show that f is continuous at every x0 ∈ R

n.

We need to show
lim
x→x0

f(x) = f(x0),

which is
lim
x→x0

||x|| = ||x0||.

In terms of the δ− ǫ definition of the limit, we want to show that for every ǫ > 0, there exists
a δ > 0 such that if ||x−x0|| < δ then

∣

∣||x|| − ||x0||
∣

∣ < ǫ. (Note that we do not need to make
sure that 0 < ||x− x0|| in this case, because if x = x0, then ||x|| − ||x0|| = 0 anyway.)

So let ǫ > 0. First, note that

||x|| = ||x− x0 + x0|| ≤ ||x− x0||+ ||x0||

by the Triangle Inequality. Hence

||x|| − ||x0|| ≤ ||x− x0||.

Similarly,
||x0|| = ||x0 − x+ x|| ≤ ||x0 − x||+ ||x||

and hence
||x0|| − ||x|| ≤ ||x0 − x|| = ||x− x0||.

Multiplying both sides by −1 yields

||x|| − ||x0|| ≥ −||x− x0||.

Therefore
−||x− x0|| ≤ ||x|| − ||x0|| ≤ ||x− x0||

and so
∣

∣||x|| − ||x0||
∣

∣ ≤ ||x− x0||

This suggests that choosing δ = ǫ > 0 will do what we want. Indeed, if ||x − x0|| < δ = ǫ
then

∣

∣||x|| − ||x0||
∣

∣ ≤ ||x− x0|| < ǫ.



We can now conclude that
lim
x→x0

||x|| = ||x0||

and thus f(x) = ||x|| is continuous at any x0 ∈ R
n.


