
Notes for Section 2.3

Let us learn about the derivatives and the differentiability of multivariable functions. For starters,
let us look at functions f : S → T where S ⊆ R

n and T ⊆ R. You can think of such functions as
having an input variable ~x that is a vector in R

n or as having n real number inputs (x1, . . . , xn),
while the output is just a real number.

The section starts off with partial derivatives, which is a pretty easy concept to digest. They tell
us about the rate of change of f with respect to changing one of its input variables while keeping
the other n − 1 constant. In other words, we are treating f as a function of a single variable
while the other n− 1 variables become constant parameters. For this reason, the definition of the
partial derivative ∂f

∂xi
on p. 106 is very similar to the definition of the derivative of a single variable

function. Calculating partial derivatives is also a straightforward task because it can be done the
same way as finding the derivative of a single variable function. Unfortunately, partial derivatives
are only part of the story about differentiation in the multivariable setting. This is because the
partial derivatives encode only limited information about how the output values of f respond to
changes in the input. The input ~x to f can change by having several of its coordinates change at
the same time.

In single variable calculus, you defined a function f to be differentiable at a point x0 if the
derivative f ′(x0) exists. The corresponding notion in multivariable calculus would be the existence
of the partial derivatives. But as I explained above, that is not a strong enough condition to say
that the behavior of f near the point ~x0 is described well by the partial derivatives. To find the
right way to extend differentiability to multivariable functions, we need to look at it in a different
way. In single variable calculus, if f is differentiable at x0, then f ′(x0) exists, and so does the
tangent line

y = f ′(x0)(x− x0) + f(x0)

to f at x0. In fact, the basic idea of differential calculus is that the behavior of the tangent
line near x0 is a good approximation to how f behaves near x0. To make this more precise, let
l(x) = f ′(x0)(x − x0) + f(x0) be the linear function whose graph is the tangent line and consider
the difference E(x) = f(x)− l(x). You can think about it as the error in using l(x) to approximate
the value of f(x), hence the letter E. It is quite clear that

lim
x→x0

E(x) = lim
x→x0

[f(x)− l(x)] = 0

since f and l are both continuous functions and their values both approach the same number
f(x0) = l(x0) as x → x0. But any line that passes through the point (x0, f(x0)) would do that.
What makes the tangent line special is that

lim
x→x0

E(x)

x− x0
= lim

x→x0

f(x)− l(x)

x− x0

= lim
x→x0

f(x)− [f ′(x0)(x− x0) + f(x0)]

x− x0

= lim
x→x0

f(x)− f(x0)− f ′(x0)(x− x0)

x− x0

= lim
x→x0

[

f(x)− f(x0)

x− x0
− f ′(x0)(x− x0)

x− x0

]

= lim
x→x0

[

f(x)− f(x0)

x− x0
− f ′(x0)

]



= lim
x→x0

f(x)− f(x0)

x− x0
− lim

x→x0

f ′(x0)

= f ′(x0)− f ′(x0)

= 0.

Think about what this says: as x gets close to x0, the error in using l to approximate f decreases
faster than the difference between x and x0. So when x is close to x0, and so x − x0 is a small
number (close to 0), E(x) must be a really tiny number. This is what we mean when we say l(x)
is a linear function that is a good approximation to f(x) near x0.

So far, what we have shown is that a function of real numbers f that has a derivative at x0 also
has a good linear approximation near x0. We can turn this around and define that f is differentiable
at x0 if there a linear function l(x) = mx+ b such that l is a good approximation to f near x0 in
the sense that the error E(x) = f(x)− l(x) satisfies

0 = lim
x→x0

E(x)

x− x0
= lim

x→x0

f(x)− l(x)

x− x0
.

We have already shown that if f ′(x0) exists, then such a linear function exists. It is easy enough
to show that the converse is also true: if such a linear function exists, then f ′(x0) also exists. In
fact, it will not come as a surprise that f ′(x0) = m, the slope of l. So in single variable calculus,
the existence of a good linear approximation at a point x0 is equivalent to the existence of the
derivative at x0. Therefore either can be used as the definition of differentiability. The existence
of the derivative is less abstract and therefore it is what students in single variable calculus classes
are typically taught.

It is the idea of a good linear approximation that is the right way to extend differentiability to
multivariable functions. What we expect from differential calculus is to allow us to approximate the
behavior of a well-behaved function by a linear function. A multivariable function is well-behaved
at a point ~x0 if its graph looks like the graph of a linear function when we look at it close enough.
Roughly speaking, it should not have holes, breaks, kinks, infinite limits because linear functions
do not do any of these things. First, what is a linear function in the multivariable setting? In the
current context of functions from R

n to R, it is a function of the form

l(x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn + b

for some coefficients a1, . . . , an, b ∈ R. Let me digress a bit to note that you could also express this
using vectors as

l(~x) = ~a · ~x+ b.

Technically, a better name for such a function is affine, not linear, because linear maps have a
definition in linear algebra which conflicts with this definition. But in calculus, linear is the typical
term used, and we won’t get hung up on the subtleties of terminology. So l is a good approximation
to f at ~x0 if the error E(~x) = f(~x) − l(~x) gets tiny even relative to the difference between ~x and
~x0 as ~x → ~x0. That is f is differentiable at ~x0 if there is a linear function l such that the error
E(~x) = f(~x)− l(~x) satisfies

0 = lim
~x→~x0

E(~x)

||~x− ~x0||
= lim

~x→~x0

f(~x)− l(~x)

||~x− ~x0||
.

Notice that the denominator is not ~x−~x0 but ||~x−~x0||. This is because ~x−~x0 is a vector in R
n and

it does not make sense to divide by a vector, and in any case, ||~x− ~x0|| is an appropriate measure
of the size of the difference between ~x and ~x0, or the distance between ~x and ~x0.

Let us look at an example to make these abstract ideas easier to digest. Let f : R2 → R be the
function f(x, y) = x2 + y2. We will show that there is a good linear approximation l to f near the



point ~x0 = (1, 2). We will let ~x = (x, y), so

l(~x) = l(x, y) = ax+ by + c

for some a, b, c ∈ R. To find good candidates for a, b, and c, we will take a hint from single
variable calculus and set a and b equal to the partial derivatives at (1, 2) and calculate c so that
f(1, 2) = l(1, 2):

∂f

∂x
= 2x =⇒ a =

∂f

∂x
(1, 2) = 2

∂f

∂y
= 2y =⇒ a =

∂f

∂y
(1, 2) = 4

and for c

f(1, 2) = l(1, 2)

5 = 2(1) + 4(2) + c

c = −5.

So l(x, y) = 2x+4y−5. Graph f and l in your favorite 3-D graphing app to see what these surfaces
look like. The graph of l is a plane that is tangent to the graph of f at (1, 2). Let us show that l
is a good approximation to f near (1, 2).

lim
~x→~x0

E(~x)

||~x− ~x0||
= lim

(x,y)→(1,2)

f(x, y)− l(x, y)
√

(x− 1)2 + (y − 2)2

= lim
(x,y)→(1,2)

x2 + y2 − (2x+ 4y − 5)
√

(x− 1)2 + (y − 2)2

= lim
(x,y)→(1,2)

x2 − 2x+ y2 − 4y + 5
√

(x− 1)2 + (y − 2)2

= lim
(x,y)→(1,2)

x2 − 2x+ 1 + y2 − 4y + 4
√

(x− 1)2 + (y − 2)2

= lim
(x,y)→(1,2)

(x− 1)2 + (y − 2)2
√

(x− 1)2 + (y − 2)2

= lim
(x,y)→(1,2)

√

(x− 1)2 + (y − 2)2

Now you can either convince yourself that

lim
(x,y)→(1,2)

[(x− 1)2 + (y − 2)2] = 0,

and hence
lim

(x,y)→(1,2)

√

(x− 1)2 + (y − 2)2 = 0,

which I will leave as an exercise for you, or you could note that

lim
(x,y)→(1,2)

√

(x− 1)2 + (y − 2)2 = lim
~x→~x0

||~x− ~x0|| = 0

as ~x → ~x0 means exactly that the distance between ~x and ~x0 is approaching 0.
Let me digress a bit and mention that another convenient notation for the partial derivatives

in this context, especially when you want to talk about their values at a specific point, is fx and
fy. So for example, ∂f

∂x
(1, 2) = fx(1, 2). If you have n input variables, you get fx1

, . . . , fxn
. I

wanted to mention this just in case you look in another textbook or on the internet. So the tangent
line of single variable calculus becomes a tangent plane for functions from R

2 to R and in higher
dimensions, it becomes what is called a hyperplane. In general, it can be shown that if a function



f : S → T where S ⊆ R
n and T ⊆ R has a good linear approximation l : Rn → R near ~x0 then its

partial derivatives must all exist at ~x0 and l must be

l(x1, . . . , xn) =
∂f

∂x1
(~x0)x1 + · · ·+ ∂f

∂xn
(~x0)xn + b

where b is such that f(~x0) = l(~x0). Or more explicitely,

l(x1, . . . , xn) =
∂f

∂x1
(~x0)(x1 − x′1) + · · ·+ ∂f

∂xn
(~x0)(xn − x′n) + f(~x0),

where ~x0 = (x′1, . . . , x
′
n). We can write this in vector notation as

l(~x) =
( ∂f

∂x1
(~x0), . . . ,

∂f

∂xn
(~x0)

)

· (~x− ~x0) + f(~x0),

which resembles the equation of the tangent line from single variable calculus. Note that according
to what we said, the existence of the partial derivatives of f at ~x0 is a necessary condition of f to
be differentiable at ~x0. It turns out it is not a sufficient condition and there are functions whose
partial derivatives all exist at a point yet the function fails to differentiable there. I will show you
such an example later.

The gradient of f is a convenient way to gather all of the partial derivatives of f into a vector:

D f(~x) =

(

∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)

.

Note that this is a vector of functions, and in fact, you can think about D f(~x) itself as a multi-
variable function from R

n to R
n. So you can evalute D f(~x) at a given point, say at ~x0 and the

result is then a vector in R
n. In terms of the gradient, the linear approximation to f is

l(~x) = D f(~x0) · (~x− ~x0) + f(~x0).

Other common notations for the gradient are ∇f and grad f . The symbol ∇ is pronounced nabla.
It is not difficult to extend these ideas to a function f : S → T where S ⊆ R

n and T ⊆ R
m. A

linear (really affine) function l : Rn → R
m would be one of the form

l(~x) = A~x+~b

where A is an m by n matrix and ~b ∈ R
m. So f has a good linear approximation if the error

function E(~x) = f(~x)− l(~x) satisfies

0 = lim
~x→~x0

||E(~x)||
||~x− ~x0||

= lim
~x→~x0

||f(~x)− l(~x)||
||~x− ~x0||

.

Notice that we now have the magnitude of E(~x) in the numerator. Since E is now a vector-valued
function, it makes sense to measure the size of the error by taking the magnitude of the output. It
this case, the right choice of the matrix A turns out to be

A =







∂f1
∂x1

(~x0) · · · ∂f1
∂xn

(~x0)
...

...
∂fm
∂x1

(~x0) · · · ∂fm
∂xn

(~x0)







of partial derivatives of f at ~x0, where the f1, . . . , fm are the component functions of f . In general,
the matrix

D f(~x) =







∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn







contains the partial derivatives of f and you can think about it as playing the same role in multi-
variable calculus as the derivative function f ′ of f in single variable calculus. The book calls this



matrix of functions D f(~x) the derivative of f or the differential of f . It also goes by the names
Jacobian or Jacobian matrix of f and total derivative of f . Study Example 6 to see what such a
matrix looks like. Using this notation, the linear approximation of f at ~x0 is still

l(~x) = D f(~x0)(~x− ~x0) + f(~x0),

only now you need to interpret the vectors ~x and ~x0 as column vectors to be able to make sense of
the matrix multiplication.

This section presents two theorems, without proofs. Theorem 8 is the multivariable generalization
of a theorem you are familiar with from single variable calculus: a function that is differentiable
at a point is also continuous there. In fact, the same proof works in multivariable calculus, other
than having to adjust to the more elaborate notation and definition of differentiability. Theorem
9 deserves your attention. I pointed out that having partial derivatives at a point is not enough to
guarantee that a function is differentiable there. But having partial derivatives that are continuous
near the point is enough to guarantee differentiability. In fact, it is more than enough: having
continuous partial derivatives is a stronger condition on a function than differentiability. It is
possible to construct a function that is differentiable at a point but its partial derivatives at that
point are not continuous in any neighborhood of that point. Theorem 9 can make your life easier
when you need to prove that a multivariable function is differentiable: it is often easier to show that
the partial derivatives are continuous than to mess with limits to prove that the linear approximation
is a good one. See Example 10 for how this works.

I promised you a function whose partial derivatives exist at a point but the function is not dif-
ferentiable there. The book also presents such an example in Example 9. Note that the function in
that example has partial derivatives at (0, 0) but is not continuous there, so it cannot be differen-
tiable at (0, 0) either. But it is a rather contrived example. Here is one that may seem quite tame

at first. Let f : R2 → R be given by f(x, y) =
√

|xy|. I will show that f has partial derivatives at
(0, 0) but is not differentiable there. First, the partial derivatives:

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0

Similarly,

∂f

∂y
(0, 0) = lim

h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0

So the linear approximation to f is

l(x, y) = 0(x− 0) + 0(y − 0) + f(0, 0) = 0.

But is it a good one? We have E(x, y) = f(x, y)− l(x, y) =
√

|xy| and

lim
(x,y)→(0,0)

E(x, y)
√

(x− 0)2 + (y − 0)2
= lim

(x,y)→(0,0)

√

|xy|
√

x2 + y2
.

I claim this limit is not 0. Actually, it does not even exist. I will prove to you that it is not 0. If it
were 0, then for every neighborhood N of 0 there would have to be a corresponding neighborhood
U of (0, 0) such that f(x, y) ∈ N whenever (x, y) ∈ U . We will show thatfor N = (−1/2, 1/2) there
is no such neighborhood U by showing that any neighborhood U of (0, 0) contains some point (x, y)
such that f(x, y) 6∈ N . So let U be any neighborhood of (0, 0). Then there must be some δ > 0
such that the open disk Dδ(0, 0) ⊆ U . Choose a number 0 < x < δ√

2
and let y = x. Then the point

(x, y) is in Dδ(0, 0) ⊆ U since
√

x2 + y2 < δ. But
√

|xy|
√

x2 + y2
=

√

|x2|√
x2 + x2

=
x√
2x

=
1√
2
6∈ N.


