NOTES FOR SECTION 2.5

This section is about properties of derivatives of multivariable functions, which you can use to
differentiate more complex multivariable functions: the Constant Multiple Rule, the Sum Rule,
the Product Rule, the Quotient Rule, and the Chain Rule. All of these take forms very similar
to the corresponding rules in single variable calculus, only they need to be interpreted in terms
of addition and multiplication by a scalar of vectors and matrices, and multiplication of matrices
since derivatives of multivariable functions are typically vectors or matrices. Theorem 10 lists all
except the Chain Rule. Pay attention to details, such as f and ¢ need to share the same domain
and codomain to be added. Think about why these restrictions are required. Also, spend some
time thinking about what D f and D g are in the various rules. Are they vectors? In what vector
space? Are they matrices? What size matrices? Think about each multiplication. Is it a product
of numbers, or multiplication of a vector by a scalar or of a matrix by a scalar, or a product of two
matrices? If you get confused,ttrying the rule on a specific example may help to clear things up.

Notice that the formulas in Theorem 10 follow directly from single variable calculus. This is
because the derivative of a multivariable function f : R™ — R™ is a matrix whose entries are the

partial derivatives of the component functions gﬂ{; The partial derivative gg{; is the single variable

derivative of f; if you treat f; as a function of only x; and the other input variables as constant
parameters. So it makes sense that partial derivatives behave just like derivatives in single variable
calculus and so they obey the Constant Multiple Rule, the Sum Rule, the Product Rule, and the
Quotient Rule from single variable calculus. For example, the Sum Rule

D(f + g)(wo) = D f(xo) + D g(o)

just says that the ij-entry of the matrix D(f + g)(x) is the sum of the ij-entries of the matrices
D f(z¢) and D g(zp). Those entries are the partial derivatives of the i-th component functions with
respect to x;, so all we are saying is that
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=D f(z0) + D g(xo)

for each i and j. If this sounds like a lot of abstract nonsense, try this on the functions f, g : R> — R?
defined by
fla,y.2) = (@ + 3yz, 2y +y2),  g(z,y,2) = (sin(z + 2y + 32), cos(zy2)).

Write down the derivative matrix D(f + g), and notice as you are doing it that you are using the
Sum Rule from single variable calculus each time you calculate one of the six entries.

The interesting part of Theorem 10 is not the formulas, but the assertions of differentiability.
For example, we are not just saying that

D(f + g)(z0) = D f(x0) + D g(x0)-

We are also saying that if f and g are differentiable functions at xg, that is

Li(z) =D f(zo)(x — o) + f(z0)
and
l2(x) = D g(zo)(z — x0) + g(w0)
are good linear approximations for f and g near xg in the sense that
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then
I(z) = D(f + g)(x0)(x — z0) + (f + g)(z0) = (D f(zo) + D g(w0)) (z — z0) + f(z0) + g(x0)

is also a good linear approximation to f + ¢g near xy. That is
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as well. This may seem very abstract, but is in fact easy enough to prove. Let us give it a try.
First, note that

I(x) = (D f(zo) + D g(z0))(z — x0) + f(x0) + g(x0)
=D f(xo)(z — zo) + f(20) + D g(z0)(x — o) + g(x0)
= l1(x) + l2(x).
Now
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= |If(z) = l(z) + g(x) — la()|]
< |If(x) = L@l + [lg(x) = l2(2)]]
by the Triangle Inequality. Since ||z — x¢|| > 0, it is also true that

1(F +9)@) — W)l _ [If(@) = @)l +lg(@) = L@ _ [IF(z) —a@)]]  llg(z) - L)l

||z — x| |z — ol ||z — o] |z — 0|

Obviously,
I(f + 9)(z) — I(=)]]

0<
||z — o]

since the numerator is nonnegative and the denominator is positive. By the Squeeze Theorem
(multivariable version of course, but completely analogous to the single variable version):
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We can now conclude that
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that is [ is a good linear approximation to f + g, and hence f + ¢ is differentiable at x.
This last proof is the same as that in the textbook on the top of p. 126, with a few more details
spelled out. But I think the textbook does a rather poor job of explaining to you what it is that

they are trying to prove. It is not the formula

D(f + g)(zo) = D f(z0) + D g(x0)-

That follows from the properties of partial derivatives. It is the fact that the differentiability of f
and g at xg guarantees the differentiability of f + g at xg.

The other main result in this section is the multivariable version of the Chain Rule. Let me state
the Chain Rule in a way that it will really look analogous to the Chain Rule from single variable
calculus. I do not want to be distracted by domain compatibility issues, so I will state this for



functions whose domain is the entire vector space, but you should understand that the result is
valid as long as the outputs of g are interior points of the domain of f.

Theorem. The Chain Rule: Let f : R™ — RP and g : R® — R™. Suppose g is differentiable at
x € R" and f is differentiable at g(a). Then f o g is differentiable at a and

D(fog)(a) =D f(g(a)) D g(a).

I think the textbook pulls a fast one on us here. It claims to prove the Chain Rule, at least in the
somewhat special case when all of the partial derivatives of f are continuous at g(zp). I think what
it does prove is that the partial derivatives of f o g all exist and the formula for D(f o g) given in
the theorem is the right formula for the derivative of fog. But remember that the existence of the
derivative matrix does not guarantee that fog is actually differentiable at x¢ and I do not see where
that is proven. I think that to show f o g is differentiable at z¢ if f and ¢ satisfy the conditions
in the theorem, we would have to get our hands dirty with some limits and error functions. I am
happy to leave that to a more advanced analysis course, if you choose to take one.

As far as showing that the formula of the Chain Rule is correct, I would say the textbook does
a pretty good job at reasoning it out. I will let you read it, but of course, I am always happy to
talk about it in class if you want me to clarify something. The examples that follow show you how
to use the Chain Rule to differentiuate concrete composite functions. It takes a bit of practice to
learn the pattern, but it is not particularly tricky.

One last note, on the Product Rule and the Quotient Rule. The way these are stated in Theorem
10, applies only to real-valued functions. But both can be generalized somewhat. In the Product
Rule, one of the two functions, either one, could be vector-valued, by interpreting the multiplication
as multiplication of a vector by a scalar. This works because you can just use the Product Rule
as stated in Theorem 10 for each component function of the vector-valued function among f and
g. But you need to be careful about one thing if you want to do this: you need to write the value
of the vector-valued function as a column vector in R” and you need to expand partial derivatives
along rows. So for example, if f: R® — R and g : R? — R*, then h = fg: R?® — R* so D h(zg) is
a 4 by 3 matrix, g(xg) is a column vector in R, D f(z¢) = V f(z0) is a row vector in R3, f(xo) is
a real number, and D g(z9) is a 4 by 3 matrix. So both g(xo) D f(xo) and f(z¢) D g(xo) are 4 by
3 matrices. If you are not careful about this, you will find that you are supposed to add apples (or
scalars) to oranges (or matrices).



