
Notes for Section 3.1

Iterated or higher (order) partial derivatives are partial derivatives of partial derivatives of mul-
tivariable functions. They are the multivariable analogs of the second, third, etc derivatives you
know from single variable calculus. If f : Rn

→ R, then the partial derivatives of f are themselves
functions from R

n to R. So each ∂f
∂xi

can have its own partial derivatives with respect to any of its
input variables:
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So f would have n partial derivatives, n2 second partial derivatives, n3 third partial derivatives,
etc. Common notations for these are

∂
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= (fxi

)xj
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f) = Dxjxi
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Notice that when using the ∂2f
∂xj∂xi

and the Dxjxi
f notation, the variables are listed from right to

left according to the order in which the partial derivatives were taken. This is the result of the
prefix notation and similar to how you would interpret a composite function f ◦ g(x). The order is
from left to right when using the fxixj

notation because of the postfix notation. The longer versions
of these notations using parentheses should give you a hint about the correct order.

An iterated partial derivative in which the differentiation is done with respect to several different
variables is called a mixed partial derivative. For example, if f : R3

→ R,
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are all examples of mixed partial derivatives, while
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are not.
Calculating iterated partial derivatives is straightforward as all you are doing is repeating (iter-

ating) the process of finding the partial derivative of a multivariable function. And as we noted
when we first encountered partial derivatives, calculating a partial derivative is essentially single
variable differentiation. I think you will find it easy to work your way through Examples 1-3 in the
textbook and understand the process.

Higher order partial derivatives encode information about the finer shape of the graph of f much
the same way as higher order derivatives in single variable calculus do. Of course, things are a little
more complex since we have so many more of these.

One interesting property of iterated partial derivatives is that in many cases, the mixed partial
derivatives only depend on which variables the differentiation is done with respect to and not on
their order. For example, if f : R3

→ R, it is often the case that
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fxyz = fxzy = fyxz = fyzx = fzxy = fzyx.

The relevant theorem is often referred to as Clairaut’s Theorem or Schwarz’s Theorem. I will
include the proof here because the textbook glosses over a number of details. Perhaps that is
alright as the details can distract from the main ideas, which are not that difficult.



Theorem. Let f : Rn
→ R such that the mixed partial derivatives ∂2f

∂xj∂xi
and ∂2f

∂xi∂xj
both exist and

are both continuous in some neighborhood of x0 ∈ R
n. Then
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Proof: For the sake of keeping the notation simpler, we will prove this in the special case
f : R2

→ R. The same argument works when n > 2 too. So we want to prove that
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assuming that both mixed partials exist and are continuous near (x0, y0). Let ∆x and ∆y be
small enough that all of the points of the rectangle whose opposite vertices are are (x0, y0) and

(x0+∆x, y0+∆y) in the xy-plane are in the neighborhood where both ∂2f
∂y∂x

and ∂2f
∂x∂y

are continuous.

Call this rectangular region E. See Figure 3.1.1 in your textbook for what E looks like. Let

S(∆x,∆y) = f(x0 +∆x, y0 +∆y)− f(x0 +∆x, y0)− f(x0, y0 +∆y) + f(x0, y0).

Let g be the single variable function

g(x) = f(x, y0 +∆y)− f(x, y0).

In other words, we are treating y0 and ∆y as constant parameters while we let x vary. Notice that

S(∆x,∆y) = g(x0 +∆x)− g(x0).

Similarly, let h be the single variable function

h(y) = f(x0 +∆x, y)− f(x0, y).

Now we are treating x0 and ∆x as constant parameters while we let y vary. Notice that

S(∆x,∆y) = h(y0 +∆y)− h(y0).

Since the x-partial of f exists at every point (x, y) ∈ E, we know that
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also exists at every x in the interval [x0, x0 + ∆x]. (If ∆x < 0, just switch x0 and x0 + ∆x as
the endpoints of the interval.) In other words, g is differentiable on [x0, x0 +∆x]. Hence g is also
continuous on [x0, x0 + ∆x]. By the Mean Value Theorem from single variable calculus, there is
some point x ∈ (x0, x0 +∆x) such that

g(x0 +∆x)− g(x0) = g′(x)∆x.

So
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We can now apply the Mean Value Theorem again to ∂f
∂x

(x, y) as a function of y. That it is a
differentiable and continuous function of y on the interval [y0, y0 +∆y] follows from the fact that

the mixed partial ∂2f
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exists at (x, y) ∈ E. So by the MVT, there exists some y ∈ (y0, y0 + ∆y)
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We can now do the same thing with h. There is some y ∈ (y0, y0 +∆x) such that

S(∆x,∆y) = h(y0 +∆y)− h(y0) = h′(y)∆y =
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And now there is some x ∈ (x0, x0 +∆x) such that
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Finally, we let (∆x,∆y) → (0, 0). This implies ∆x → 0 and ∆y → 0. Since x and x are between
x0 and x0 + ∆x, both x and x approach x0 as ∆x → 0. Similarly, both y and y approach y0 as
∆y → 0. So as (∆x,∆y) → (0, 0), both (x, y) and (x, y) approach (x0, y0). Here is where we will
use the continuity of the mixed partial derivatives:
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Note that we can show that higher order mixed partial derivatives that are continuous do not
depend on the order of the variables in the differentiation either by repeatedly applying the above
theorem to switch the order of variables two at a time.

Examples 4 and 5 illustrate the equality of mixed partial derivatives on specific functions. The
historical note at the end of the section tells you about how higher partial derivatives show up in
some very prominent equations in physics. Solving such differential equations is definitely beyond
the scope of our course, but you know enough about partial derivatives at this point to be able to
verify if a given function satisfies such an equation. See Example 6 for how this can be done.

If you are curious to see a function whose mixed partial derivatives are not equal (because they
are not continuous), exercise 3.1.32 has one for you. Working out the first and second partial
derivatives of the function in this exercise takes some work because the function is a piecewise
defined function. So its partial derivatives at (0, 0) cannot be found simply by differentiating a
formula using the usual rules of single variable differentiation. Limits must be used, although the
limits, which are single variable limits, turn out to be quite easy to do.


