
MCS 314 Exam 1 Solutions

1. Let n ∈ Z
≥3. For a permutation σ ∈ Sn−2, define σ′ ∈ Sn by

σ′(i) =

{

σ(i) if 1 ≤ i ≤ n− 2

i if n− 1 ≤ i ≤ n.

Now, let θ : Sn−2 → An be the map

θ(σ) =

{

σ′ if σ ∈ An−2

σ′(n− 1 n) if σ /∈ An−2.

(a) (3 pts) Verify that θ indeed maps every element of Sn−2 to some element in An.

Hint: You may want to start by showing that φ : Sn−2 → Sn given by φ(σ) = σ′ is a
homomorphism that maps transpositions in Sn−2 to transpositions in Sn.

Let σ, τ ∈ Sn−2 and let Ω = {1, 2, . . . n− 2}. If i ∈ Ω, then τ(i) ∈ Ω, and hence

φ(στ)(i) = (στ)′(i) = στ(i) = σ(τ(i)),

and

φ(σ)φ(τ)(i) = σ′τ ′(i) = σ′(τ ′(i)) = σ′(τ(i)
︸︷︷︸

∈Ω

) = σ(τ(i)).

If i = n− 1 or i = n, then

φ(στ)(i) = (στ)′(i) = i,

and

φ(σ)φ(τ)(i) = σ′τ ′(i) = σ′(τ ′(i)) = σ′(i) = i.

Hence φ(στ) = φ(σ)φ(τ). This shows that φ is a homomorphism.
It should be clear that if σ = (ij) in Sn−2, then φ(σ) = σ′ = (ij) in Sn. So φ maps
transpositions to transpositions. It now easily follows that if σ is a product of k trans-
positions in Sn−2 then φ(σ) is also a product of k corresponding transpositions in Sn.
Hence φ maps even permutations to even permutations and odd permutations to odd
permutations. Therefore if σ is even, then θ(σ) = σ′ is also even; and if σ is odd, then
θ(σ) = σ′(n− 1 n) is again even. So θ(σ) ∈ An for all σ ∈ Sn−2.

(b) (5 pts) Show that θ is a homomorphism whose kernel is {()}.

We have shown in part (a) that (στ)′ = σ′τ ′ for all σ, τ ∈ Sn−2. Observe that if
σ ∈ Sn−2, then σ′ and (n − 1 n) are disjoint permutations in Sn, and therefore they
commute. Now, if σ, τ ∈ An−2, then στ ∈ An−2, and so

θ(στ) = (στ)′ = σ′τ ′ = θ(σ)θ(τ)

If σ, τ /∈ An−2, then σ and τ are odd permutations, and so στ is even. Hence

θ(στ) = (στ)′ = σ′τ ′ = σ′τ ′(n− 1 n)2 = σ′(n− 1 n)τ ′(n− 1 n) = θ(σ)θ(τ).

If σ ∈ An−2 and τ /∈ An−2, then σ is even and τ is odd, and so στ is odd. Hence

θ(στ) = (στ)′(n− 1 n) = σ′τ ′(n− 1 n) = θ(σ)θ(τ).

If σ /∈ An−2 and τ ∈ An−2, then σ is odd and τ is even, and so στ is odd. Hence

θ(στ) = (στ)′(n− 1 n) = σ′τ ′(n− 1 n) = σ′(n− 1 n)τ ′ = θ(σ)θ(τ).

In all four cases, θ(στ) = θ(σ)θ(τ). So θ is a homomorphism.



Finally, suppose θ(σ) = (). Then either σ′ = () or σ′(n−1 n) = (). But the latter is not
possible since σ′(n−1 n) maps n−1 to n, and so it cannot be the identity permutation.
Therefore σ′ = (), which means i = σ′(i) = σ(i) for all 1 ≤ i ≤ n−2. This shows σ = ().
Therefore ker(θ) = {()}.

(c) (2 pts) Conclude that An contains a subgroup that is isomorphic to Sn−2.

Since ker(θ) = {()}, the map θ is injective. Therefore its image θ(Sn−2), which is a
subgroup of An is isomorphic to Sn−2.

2. Let G be a nonabelian group of order 6.
(a) (6 pts) Prove that G has a nonnormal subgroup H of order 2.

By Cauchy’s Theorem, G must have an element x of order 2 and an element y of order
3. Let H = 〈x〉. Suppose H is normal in G. Let y be any element of G that is not in
H. Since H is normal, its left and right cosets are the same. In particular,

yH = Hy =⇒ {y, yx} = {y, xy} =⇒ yx = xy.

Hence x and y commute. It follows that K = 〈x, y〉 is an abelian subgroup of G. Since
|K| contains x and y, the order of K must be divisible by both 2 and 3. The only
possibility is that |K| = 6, and so K = G. But this results in a contradiction since G is
nonabelian. Therefore H must not be normal in G.

(b) (4 pts) Use the result in part (a) to prove that G must be isomorphic to S3.

Hint: Show that the action of G by left multiplication on the left cosets of H induces a
permutation representation of G into S3 whose kernel is trivial.

Let A = {H1, H2, H3} be the set of left cosets of H, such that H1 = H. Let G act
on A by left multiplication. We showed in class that this is a group action, and that
the induced permutation representation φ : G → SA is a group homomorphism. Since
|A| = 3, we may treat SA as S3 and π as a homomorphism G → S3. Now, suppose
g ∈ ker(π). Then gHi = Hi for all i = 1, 2, 3. In particular, gH = gH1 = H1 = H.
Hence g ∈ G. So ker(π) ≤ H. But ker(π) is a normal subgroup of G, and H is
not, so ker(π) 6= H. Therefore ker(π) = {1}. This shows that π is injective. Since
|G| = 6 = |S3|, the image of φ must be all of S3. Hence φ : G → S3 is an isomorphism.

3. (a) (4 pts) Let G be a group. State the Class Equation for G and explain what it means.
You do not need to prove that the class equation holds, you just need to explain what
the various parts of the equation mean.

The Class Equation is

|G| = |Z(G)|+
r∑

i=1

|G : CG(gi)|

where g1, g2, . . . , gr are representatives of the nontrivial (that is of size more than 1)
conjugacy classes of G, one representative from each such conjugacy class, and Z(G) is
the center of G.

(b) (6 pts) Let G be a group of prime power order |G| = pα with α ∈ Z
+. Use the Class

Equation to prove that the center of G must be nontrivial, that is Z(G) 6= {1}.

In the class equation for G, the term |G : CG(gi)| is the size of the orbit of gi under
conjugation by the elements of G. The gi are the representatives of the conjugacy
classes of size greater than 1. So |G : CG(gi)| > 1. This number is also the index of the



subgroup CG(gi), so it must divide |G| = pα. Therefore |G : CG(gi)| is some power pβi

where βi ≥ 1. Hence the number on the right-hand side of

|Z(G)| = |G| −
r∑

i=1

|G : CG(gi)|

is divisible by p. Therefore |Z(G)| is also divisible by p. This shows that Z(G)| 6= 1,
that is the center of G is nontrivial.

4. (5 pts each) Let G be a group. For g ∈ G, let σg : G → G be the map

σg(x) = gxg−1.

We proved in class that σg is an automorphism of G. Define the map φ : G → Aut(G) by
φ(g) = σg.
(a) Prove that φ is a homomorphism.

Let g, h ∈ G. Then φ(gh) = σgh and φ(g)φ(h) = σgσh. Now, let x ∈ G. Then

σgh(x) = (gh)x(gh)−1 = ghxh−1g−1 = σg(hxh
−1) = σg(σh(x)) = σgσh(x).

Since this is true for all x ∈ G, we can conclude σgh = σgσh and hence φ(gh) = φ(g)φ(h).
Therefore φ is a homomorphism.

(b) Prove that ker(φ) = Z(G), and use this to conclude that the image φ(G) is isomorphic
to G/Z(G).

Let g ∈ G. Then

g ∈ ker(φ) ⇐⇒ σg(x) = x for all x ∈ G

⇐⇒ gxg−1 = x for all x ∈ G

⇐⇒ g ∈ Z(G)

So ker(φ) = Z(G). But the First Isomorphism Theorem, φ(G) ∼= G/Z(G).

5. (10 pts) Extra credit problem. Let G be a finite group of odd order. Show that if G has
a normal subgroup N of order 5, then N ≤ Z(G).

Hint: Consider the conjugacy classes of the nonidentity elements in N and show that at
least one of them is of size 1. Show that this implies that all of the nonidentity elements of
N are in the center of G.

Suppose N is a normal subgroup of order 5 in G. Let x be any nonidentity element of
N . Then |x| = 5 and N = 〈x〉. For every g ∈ G, the conjugate gxg−1 must be in N ,
because N is normal, and must also be order 5, because conjugation preserves the order.
Hence conjugation by G permutes the nonidentity elements of N . Therefore, the size of the
conjugacy class of x is |G : CG(x)| ≤ 4. This number must also divide |G|, which is odd, and
therefore it must be either 1 or 3. This shows that the four nonidentity elements of N either
form a conjugacy class of size 1 and a conjugacy class of size 3, or four conjugacy classes of
size 1. In either case, there is a nonidentity element y of N that is in a conjugacy class by
itself, that is y ∈ Z(G). But y also generates N , so every other element of N must also be
in Z(G). Hence N ≤ Z(G).


