MCS 314 EXAM 2 SOLUTIONS

1. (10 pts) Let n € Z=°. Show that the only normal subgroups of S, are {()}, A,, and S,,.

Hint: Use that if H and K are both normal subgroups in G, then H N K is normal in G,
and in H and K as well.

It is clear that {()} and S,, are normal subgroups of S,,. We showed in class that A, <.5,.
Let H <5,. We will show that H is one of the three normal subgroups already listed.

Since H and A,, are both normal in S, so is H N A, .Hence H N A,, is also normal in A,,.
We showed in class that A,, is a simple group for n > 5. Hence H N A,, is either {()} or A,.

Suppose H N A, = A,. Then A, < H. One possibility is that H = A,. If not, then
H < A,,and so |H : A,| > 1. Hence

2=1S,: An| = |Sn: H||H : Ay
1
>

shows |S,, : H| =1, and so H = S,,.

Suppose HNA,, = {()}. Suppose x,y € H are nonidentity elements. Then 2 and y are odd
permutations. Hence z? and zy are even permutations in H. But the only even permutation
in His (). So2? = xy = (), and we get © = y by canceling = on the left. We have just
shown that H can have at most one nonidentity element z, and |z| = 2. So H = {(),z}. By
the normality of H, it must be true that yzy~! € H for all y € S,,. Conjugation preserves
order, and so yzy~!' must actually be equal to . We have just shown that z is in the center
of S,. But we know Z(S,) = {()} by one of our homework exercises (4.3.8). Therefore, no
such nonidentity element = can be in H. Hence H = {()}.

2. (5 pts each) Let R be a commutative ring and let x € R be nilpotent, that is there exists
some m € Z* such that 2™ = 0.
(a) Prove that z is either zero or a zero divisor.

Hint: Set m as the least positive integer such that 2 = 0. Remember that x is a zero
divisor if x # 0 and there exists some y # 0 such that zy = 0.

Let m be the least positive integer such that z,, = 0. If m = 1, then z = z! = 0. If
m > 1, then z = 2! # 0, so x is a nonzero element of R. We also know 2™~ # 0 by
the minimality of m. But xz™~! = 2™ = 0. Therefore z is a zero divisor.

(b) Prove that 1+ z is a unit in R.

Hint: Prove that if x is nilpotent, so is y = —z, and use this to construct a multiplicative
inverse of 1 — y.

Let m € Z* be such that 2™ = 0. First, let y = —z, and observe that y™ = (—x)™ =
(—=1)™z™ = 0. So y is also nilpotent. Now

L= ty+y’+ oty ) =1ty+y’+ oty —y =y =y
=1

Hence 1 +y+y?+---+y™ ! is a right inverse of 1 —y. By commutativity, it must also
be a left inverse of 1 —y. Hence 1 +x =1 — gy is a unit.



3. Prove that there exists no simple group of order 30.

Hint: Show that at least one of the Sylow subgroups of a group of order 30 must be
normal.

Let G be a group of order 30. We will show that G cannot be simple by showing that one
of its Sylow subgroups must be normal. Let ng and ns be the number of Sylow 3-subgroups
and Sylow 5-subgroups of G. By the Sylow Theorem, we know

n3/10 and n3=1 mod 3

and
ns5/6 and ns =1 mod 5

So ng is either 1 or 10, and ns is either 1 or 6. Suppose ng3 = 10 and n5 = 6. Since
the Sylow 3-subgroups are all cyclic groups of prime order, the intersection of two distinct
Sylow 3-subgroups must be trivial. Hence the 10 Sylow 3-subgroups must contain 20 distinct
elements of order 3. Similarly, any two distinct Sylow 5-subgroups can have only the identity
in common, and so they must contain 24 distinct elements of order 5. But that is already
204-24=44 nonidentity elements, and a group of order 30 cannot have that many. Therefore
either n3 = 1 or ny = 1 (or both), and the corresponding Sylow subgroup(s) of G must be
normal in GG. Hence G cannot be simple.

4. (10 pts) Let ¢ : R — S be a ring homomorphism. Prove that the kernel of ¢ is an ideal of R.

Let
K =ker(¢) ={z € R| ¢(z) = 0}.
Regarding ¢ as a group homomorphism on the additive groups of R and S, we already know
from MCS 313 that this kernel is a subgroup of the additive group of R. So the only thing
we need to show is that for all x € K and all » € R, K contains rz and zr.
Since ¢ is a ring homomorphism,
¢(rz) = ¢(r) ¢(z) = 0.

~—~—
0

Similarly,
dlar) = ¢(z) ¢(r) = 0.
0

5. (10 pts) Extra credit problem. Let R be a ring with identity. Prove that if R is finite,
then every nonzero element of R is either a unit or a zero divisor.

Hint: For z € R, consider whether the map ¢, : R — R defined by ¢, (r) = xr is injective
or not.

Let « be a nonzero element in R. Let ¢, : R — R be the map ¢,(r) = xzr. Suppose ¢ is
not injective. Then there exist some y # z in R such that

Ox(Y) = Pu(2) = zy=22 = zy—22=0 = z(y—2) =0.

Since y # z, we know y — z # 0. Therefore z is a zero divisor.

On the other hand, if ¢, is injective, then it must also be surjective since it is from a
finite set to itself (by Prop 1(4) in Section 0.1). Hence there exists some y € R such that
¢2(y) = 1. Hence xy = 1. That is not quite enough to say that z is a unit because R need
not be commutative.

We can now repeat the argument with the map o, : R — R defined by o,(r) = rz. Just
like above, if o, is not injective, then there must exist some nonzero r € R such that rx = 0,



and hence z is a zero divisor. If o, is injective, then it is also surjective, and this gives is
some z € R such that zx = 1. By the associativity of multiplication,

y = (zz)y = 2(zy) = 2.
So y is really the inverse of x. Therefore x is a unit.



