
MCS 314 Exam 2 Solutions

1. (10 pts) Let n ∈ Z≥5. Show that the only normal subgroups of Sn are {()}, An, and Sn.

Hint: Use that if H and K are both normal subgroups in G, then H ∩K is normal in G,
and in H and K as well.

It is clear that {()} and Sn are normal subgroups of Sn. We showed in class that AnESn.
Let H E Sn. We will show that H is one of the three normal subgroups already listed.

Since H and An are both normal in Sn, so is H ∩An.Hence H ∩An is also normal in An.
We showed in class that An is a simple group for n ≥ 5. Hence H ∩An is either {()} or An.

Suppose H ∩ An = An. Then An ≤ H. One possibility is that H = An. If not, then
H � An, and so |H : An| > 1. Hence

2 = |Sn : An| = |Sn : H| |H : An|
︸ ︷︷ ︸

>1

shows |Sn : H| = 1, and so H = Sn.
Suppose H∩An = {()}. Suppose x, y ∈ H are nonidentity elements. Then x and y are odd

permutations. Hence x2 and xy are even permutations in H. But the only even permutation
in H is (). So x2 = xy = (), and we get x = y by canceling x on the left. We have just
shown that H can have at most one nonidentity element x, and |x| = 2. So H = {(), x}. By
the normality of H, it must be true that yxy−1 ∈ H for all y ∈ Sn. Conjugation preserves
order, and so yxy−1 must actually be equal to x. We have just shown that x is in the center
of Sn. But we know Z(Sn) = {()} by one of our homework exercises (4.3.8). Therefore, no
such nonidentity element x can be in H. Hence H = {()}.

2. (5 pts each) Let R be a commutative ring and let x ∈ R be nilpotent, that is there exists
some m ∈ Z+ such that xm = 0.
(a) Prove that x is either zero or a zero divisor.

Hint: Set m as the least positive integer such that xm = 0. Remember that x is a zero
divisor if x 6= 0 and there exists some y 6= 0 such that xy = 0.

Let m be the least positive integer such that xm = 0. If m = 1, then x = x1 = 0. If
m > 1, then x = x1 6= 0, so x is a nonzero element of R. We also know xm−1 6= 0 by
the minimality of m. But xxm−1 = xm = 0. Therefore x is a zero divisor.

(b) Prove that 1 + x is a unit in R.

Hint: Prove that if x is nilpotent, so is y = −x, and use this to construct a multiplicative
inverse of 1− y.

Let m ∈ Z+ be such that xm = 0. First, let y = −x, and observe that ym = (−x)m =
(−1)mxm = 0. So y is also nilpotent. Now

(1− y)(1 + y + y2 + · · ·+ ym−1) = 1 + y + y2 + · · ·+ ym−1 − y − y2 − · · · − ym

= 1− ym

= 1

Hence 1+ y+ y2+ · · ·+ ym−1 is a right inverse of 1− y. By commutativity, it must also
be a left inverse of 1− y. Hence 1 + x = 1− y is a unit.



3. Prove that there exists no simple group of order 30.

Hint: Show that at least one of the Sylow subgroups of a group of order 30 must be
normal.

Let G be a group of order 30. We will show that G cannot be simple by showing that one
of its Sylow subgroups must be normal. Let n3 and n5 be the number of Sylow 3-subgroups
and Sylow 5-subgroups of G. By the Sylow Theorem, we know

n3|10 and n3 ≡ 1 mod 3

and
n5|6 and n5 ≡ 1 mod 5

So n3 is either 1 or 10, and n5 is either 1 or 6. Suppose n3 = 10 and n5 = 6. Since
the Sylow 3-subgroups are all cyclic groups of prime order, the intersection of two distinct
Sylow 3-subgroups must be trivial. Hence the 10 Sylow 3-subgroups must contain 20 distinct
elements of order 3. Similarly, any two distinct Sylow 5-subgroups can have only the identity
in common, and so they must contain 24 distinct elements of order 5. But that is already
20+24=44 nonidentity elements, and a group of order 30 cannot have that many. Therefore
either n3 = 1 or n5 = 1 (or both), and the corresponding Sylow subgroup(s) of G must be
normal in G. Hence G cannot be simple.

4. (10 pts) Let φ : R → S be a ring homomorphism. Prove that the kernel of φ is an ideal of R.

Let
K = ker(φ) = {x ∈ R | φ(x) = 0}.

Regarding φ as a group homomorphism on the additive groups of R and S, we already know
from MCS 313 that this kernel is a subgroup of the additive group of R. So the only thing
we need to show is that for all x ∈ K and all r ∈ R, K contains rx and xr.

Since φ is a ring homomorphism,

φ(rx) = φ(r)φ(x)
︸︷︷︸

0

= 0.

Similarly,
φ(xr) = φ(x)

︸︷︷︸

0

φ(r) = 0.

5. (10 pts) Extra credit problem. Let R be a ring with identity. Prove that if R is finite,
then every nonzero element of R is either a unit or a zero divisor.

Hint: For x ∈ R, consider whether the map φx : R → R defined by φx(r) = xr is injective
or not.

Let x be a nonzero element in R. Let φx : R → R be the map φx(r) = xr. Suppose φx is
not injective. Then there exist some y 6= z in R such that

φx(y) = φx(z) =⇒ xy = xz =⇒ xy − xz = 0 =⇒ x(y − z) = 0.

Since y 6= z, we know y − z 6= 0. Therefore x is a zero divisor.
On the other hand, if φx is injective, then it must also be surjective since it is from a

finite set to itself (by Prop 1(4) in Section 0.1). Hence there exists some y ∈ R such that
φx(y) = 1. Hence xy = 1. That is not quite enough to say that x is a unit because R need
not be commutative.

We can now repeat the argument with the map σx : R → R defined by σx(r) = rx. Just
like above, if σx is not injective, then there must exist some nonzero r ∈ R such that rx = 0,



and hence x is a zero divisor. If σx is injective, then it is also surjective, and this gives is
some z ∈ R such that zx = 1. By the associativity of multiplication,

y = (zx)y = z(xy) = z.

So y is really the inverse of x. Therefore x is a unit.


