1. (10 pts) Let $n \in \mathbb{Z}^{\geq 5}$. Show that the only normal subgroups of S_n are $\{()\}, A_n$, and S_n .

Hint: Use that if H and K are both normal subgroups in G, then $H \cap K$ is normal in G, and in H and K as well.

It is clear that $\{()\}$ and S_n are normal subgroups of S_n . We showed in class that $A_n \leq S_n$. Let $H \leq S_n$. We will show that H is one of the three normal subgroups already listed.

Since H and A_n are both normal in S_n , so is $H \cap A_n$. Hence $H \cap A_n$ is also normal in A_n . We showed in class that A_n is a simple group for $n \ge 5$. Hence $H \cap A_n$ is either $\{()\}$ or A_n . Suppose $H \cap A_n = A_n$. Then $A_n \le H$. One possibility is that $H = A_n$. If not, then

$$H \leq A_n$$
, and so $|H:A_n| > 1$. Hence

$$2 = |S_n : A_n| = |S_n : H| \underbrace{|H : A_n|}_{>1}$$

shows $|S_n : H| = 1$, and so $H = S_n$.

Suppose $H \cap A_n = \{()\}$. Suppose $x, y \in H$ are nonidentity elements. Then x and y are odd permutations. Hence x^2 and xy are even permutations in H. But the only even permutation in H is (). So $x^2 = xy = ()$, and we get x = y by canceling x on the left. We have just shown that H can have at most one nonidentity element x, and |x| = 2. So $H = \{(), x\}$. By the normality of H, it must be true that $yxy^{-1} \in H$ for all $y \in S_n$. Conjugation preserves order, and so yxy^{-1} must actually be equal to x. We have just shown that x is in the center of S_n . But we know $Z(S_n) = \{()\}$ by one of our homework exercises (4.3.8). Therefore, no such nonidentity element x can be in H. Hence $H = \{()\}$.

- 2. (5 pts each) Let R be a commutative ring and let $x \in R$ be nilpotent, that is there exists some $m \in \mathbb{Z}^+$ such that $x^m = 0$.
 - (a) Prove that x is either zero or a zero divisor.

Hint: Set m as the least positive integer such that $x^m = 0$. Remember that x is a zero divisor if $x \neq 0$ and there exists some $y \neq 0$ such that xy = 0.

Let *m* be the least positive integer such that $x_m = 0$. If m = 1, then $x = x^1 = 0$. If m > 1, then $x = x^1 \neq 0$, so *x* is a nonzero element of *R*. We also know $x^{m-1} \neq 0$ by the minimality of *m*. But $xx^{m-1} = x^m = 0$. Therefore *x* is a zero divisor.

(b) Prove that 1 + x is a unit in R.

Hint: Prove that if x is nilpotent, so is y = -x, and use this to construct a multiplicative inverse of 1 - y.

Let $m \in \mathbb{Z}^+$ be such that $x^m = 0$. First, let y = -x, and observe that $y^m = (-x)^m = (-1)^m x^m = 0$. So y is also nilpotent. Now

$$(1-y)(1+y+y^2+\dots+y^{m-1}) = 1+y+y^2+\dots+y^{m-1}-y-y^2-\dots-y^m$$

= 1-y^m
= 1

Hence $1 + y + y^2 + \cdots + y^{m-1}$ is a right inverse of 1 - y. By commutativity, it must also be a left inverse of 1 - y. Hence 1 + x = 1 - y is a unit.

3. Prove that there exists no simple group of order 30.

Hint: Show that at least one of the Sylow subgroups of a group of order 30 must be normal.

Let G be a group of order 30. We will show that G cannot be simple by showing that one of its Sylow subgroups must be normal. Let n_3 and n_5 be the number of Sylow 3-subgroups and Sylow 5-subgroups of G. By the Sylow Theorem, we know

$$n_3|10$$
 and $n_3 \equiv 1 \mod 3$

and

$$n_5|6$$
 and $n_5 \equiv 1 \mod 5$

So n_3 is either 1 or 10, and n_5 is either 1 or 6. Suppose $n_3 = 10$ and $n_5 = 6$. Since the Sylow 3-subgroups are all cyclic groups of prime order, the intersection of two distinct Sylow 3-subgroups must be trivial. Hence the 10 Sylow 3-subgroups must contain 20 distinct elements of order 3. Similarly, any two distinct Sylow 5-subgroups can have only the identity in common, and so they must contain 24 distinct elements of order 5. But that is already 20+24=44 nonidentity elements, and a group of order 30 cannot have that many. Therefore either $n_3 = 1$ or $n_5 = 1$ (or both), and the corresponding Sylow subgroup(s) of G must be normal in G. Hence G cannot be simple.

4. (10 pts) Let $\phi : R \to S$ be a ring homomorphism. Prove that the kernel of ϕ is an ideal of R.

Let

$$K = \ker(\phi) = \{ x \in R \mid \phi(x) = 0 \}.$$

Regarding ϕ as a group homomorphism on the additive groups of R and S, we already know from MCS 313 that this kernel is a subgroup of the additive group of R. So the only thing we need to show is that for all $x \in K$ and all $r \in R$, K contains rx and xr.

Since ϕ is a ring homomorphism,

$$\phi(rx) = \phi(r) \underbrace{\phi(x)}_{0} = 0$$

Similarly,

$$\phi(xr) = \underbrace{\phi(x)}_{0} \phi(r) = 0.$$

5. (10 pts) **Extra credit problem.** Let R be a ring with identity. Prove that if R is finite, then every nonzero element of R is either a unit or a zero divisor.

Hint: For $x \in R$, consider whether the map $\phi_x : R \to R$ defined by $\phi_x(r) = xr$ is injective or not.

Let x be a nonzero element in R. Let $\phi_x : R \to R$ be the map $\phi_x(r) = xr$. Suppose ϕ_x is not injective. Then there exist some $y \neq z$ in R such that

$$\phi_x(y) = \phi_x(z) \implies xy = xz \implies xy - xz = 0 \implies x(y - z) = 0.$$

Since $y \neq z$, we know $y - z \neq 0$. Therefore x is a zero divisor.

On the other hand, if ϕ_x is injective, then it must also be surjective since it is from a finite set to itself (by Prop 1(4) in Section 0.1). Hence there exists some $y \in R$ such that $\phi_x(y) = 1$. Hence xy = 1. That is not quite enough to say that x is a unit because R need not be commutative.

We can now repeat the argument with the map $\sigma_x : R \to R$ defined by $\sigma_x(r) = rx$. Just like above, if σ_x is not injective, then there must exist some nonzero $r \in R$ such that rx = 0, and hence x is a zero divisor. If σ_x is injective, then it is also surjective, and this gives is some $z \in R$ such that zx = 1. By the associativity of multiplication,

$$y = (zx)y = z(xy) = z.$$

So y is really the inverse of x. Therefore x is a unit.