
MCS 314 Final Exam Solutions

1. (10 pts) Let A be a nonempty set, H a subgroup of the symmetric group SA, and

F (H) = {a ∈ A | σ(a) = a for all σ ∈ H}
be the set of fixed points of H in A. Prove that if τ is an element of the normalizer NSA

(H),
then τ stabilizes both F (H) and A−F (H). That is show that for all a ∈ F (H), τ(a) ∈ F (H)
and for all a ∈ A− F (H), τ(a) ∈ A− F (H).

Hint: Note that if h ∈ H and τ ∈ NSA
(H), then τhτ−1 = h′ for some h′ ∈ H. Consider

h(τ(a)) for a ∈ F (H).

Let τ ∈ NSA
(H). Let a ∈ F (A). We want to show τ(a) ∈ F (A). To be in F (A), τ(a)

needs to be fixed by all h ∈ H. Let h be an arbitrary element of H. Since NSA
(H) is a

subgroup of S(A), it is closed under inverses. So τ−1 ∈ NSA
(H). Hence τ−1hτ ∈ H. So

τ−1hτ = h′ for some h′ ∈ H. Hence hτ = τh′. Since h′ ∈ H, h′(a) = a, and so

hτ(a) = τh′(a) = τ(a)

shows that h fixes τ(a). Since h was an arbitrary element in H, τ(a) is fixed by all h ∈ H.
Now, let a ∈ A. We will show that if τ(a) ∈ F (A), then a ∈ F (A). So if a ∈ A − F (A),

then τ(a) cannot be in F (A), and hence must be in A− F (A).
Suppose τ(a) ∈ F (A). Since τ is an element of NSA

(H), so is τ−1. We have already
shown that F (A) is stabilized by all elements of NSA

(H), and so by τ−1 in particular. Since
τ(a) ∈ F (A),

a = τ−1(τ(a)) ∈ F (A).

2. (10 pts) Let n ≥ 5. Prove that An is the only proper subgroup of Sn whose index is less than
n. You may use the result that for n ≥ 5, the only normal subgroups of Sn are {1}, An, and
Sn.

Hint: Assume H is a proper subgroup of index less than n, and let Sn act on the left
cosets of H by left multiplication.

Assume H is a proper subgroup of Sn of index less than m < n. Then H has m distinct
left cosets. Let A be the set of these left cosets of H. Label these with 1, 2, . . . ,m. Let Sn act
on A by left multiplication. With our labeling, we can view the permutation representation
π of this action as a homomorphism π : Sn → Sm.

We will show ker(π) ≤ H. Suppose σ ∈ ker(π). Then σ(gH) = gH for all g ∈ Sn. In
particular, if g = 1, then σH = H, and so σ ∈ H. Hence ker(π) ≤ H.

We also know ker(π)E Sn and for n 6= 5, the only other normal subgroups of Sn are {1},
An, and Sn. Clearly, ker(π) cannot be Sn, because it is a subgroup of the proper subgroup
H. It is also quite clear that ker(π) 6= {1}. Otherwise π would be injective, but π cannot be
injective because |Sm| = m! < n! = |Sn|. We can conclude ker(π) = An. Now

An ≤ H � Sn =⇒ 2 = [Sn : An] ≥ [Sn : H] > [Sn : Sn] = 1 =⇒ [Sn : H] = 2.

Hence H = An.

3. (10 pts) Let R be a ring with identity 1 6= 0. Prove that R is a division ring if and only if
its only left ideals are (0) and R.

Hint: To prove R is a division ring, consider the left ideal generated by any nonzero r ∈ R.

Let R be a division ring. Obviously, (0) is a left ideal in R, as it is in every ring. Suppose
I is a nonzero left ideal of R. Then I contains some nonzero x ∈ R. Since R is a division



ring, x must have an inverse x−1. Hence 1 ∈ x−1x ∈ I. Now, let r be any element of R.
Then r = r1 ∈ I. So I = R.

Conversely, suppose the only left ideals of R are (0) and R. Let x be any nonzero element
in R. Then Rx is a left ideal of R. It contains the nonzero element x, so it cannot be (0).
Therefore Rx = R. So 1 ∈ Rx. Hence there must exist some y ∈ R such that yx = 1.
Obviously, y 6= 0, otherwise yx = 0. Repeating the previous argument with the left ideal Ry
shows there is some z ∈ R such that zy = 1. Hence

z = z1 = z(yx) = (zy)x = 1x = x.

So xy = 1. This shows y is the inverse of x. Since x was an arbitrary nonzero element in R,
every nonzero element in R must have a multiplicative inverse. ’

4. (10 pts) Let G be a group and H ≤ G. Let A be the set of left cosets of H. Let G act on A
by left multiplication, and let π : G → SA be the permutation representation of this action.
Prove that ker(π) is the largest normal subgroup of G contained in H.

Hint: Prove that K ≤ ker(π) for all normal subgroups K of G such that K ≤ H.

First, note that ker(π) is certainly a normal subgroup of G. The same argument we used
in problem 2 shows that ker(π) ≤ H. We just need to show that ker(π) is the largest among
normal subgroups of G contained in H, that is if KEG and K ≤ H then K ≤ ker(π). So let
K be such a subgroup. Now, let gH be any left coset of H and k any element of K. Since
K is normal in G, there exists some g′ ∈ G such that kg = gk′. By k ∈ K ≤ H,

k(gH) = kgH = g k′H
︸︷︷︸

H

= gH.

So k ∈ ker(π). It follows that K ≤ ker(π), which is what we wanted to prove.

5. In this problem, you will show that up to isomorphism, the only simple group of order 12 is
A4.
(a) (2 pts) Suppose G is a simple group of order 12. Prove that G must have exactly four

distinct Sylow-3 subgroups.

Let n3 be the number of Sylow-3 subgroups of G. By Sylow’s Theorem, n3|4 and
n3 ≡ 1 mod 3. So n3 = 1 or n3 = 4. But we know n3 6= 1, otherwise the only Sylow-3
subgroup of G would be normal and G would not be simple. Therefore n3 = 4.

(b) (4 pts) Now, let P be a Sylow-3 subgroup of G. Let A be the set of left cosets of P and
let G act on A by left multiplication. Prove that the kernel of this action is {1}.
Hint: What did you prove in problem 4?

As we proved in problem 4, the kernel of this action of G on A is the largest normal
subgroup of G that is contained in P . Since G is simple, its only normal subgroups are
{1} and G. But P � G, so P cannot contain G. Hence the kernel is {1}.

(c) (4 pts) Argue that there must exist an injective homomorphism π : G → S4, and
therefore G is isomorphic to a subgroup of S4. Finally, conclude that this subgroup
must be A4.

Hint: To prove this last claim, it may be useful to note that A4 ∩ π(G) contains all
3-cycles in S4.

Just like in part (b), let G act on A, the set of left cosets of P , by left multiplication.
Since [G : P ] = 12/3 = 4, we can label the four left cosets in A by 1, 2, 3, and 4.
This gives us a permutation representation π : G → S4. We have already shown that



ker(π) = {1}. Hence π is injective. Therefore G ∼= im(π) ≤ S4. Hence | im(π)| = |G| =
12. We will show im(π) = A4.
Since the four Sylow-3 subgroups of G are of prime order, any two of them must have
trivial intersection {1}. So G must contain eight elements of order 3. Hence im(π)
also contains eight elements of order 3. The only elements of order 3 in S4 are the
eight 3-cycles. These are all even permutations, hence they are elements of A4. So
im(π) ∩ A4 has at least eight elements. But im(π) ∩ A4 must be a subgroup of both
im(π) and of A4 and so its order must divide 12. Therefore | im(π) ∩ A4| = 12 and
im(π) = im(π) ∩A4 = A4. Therefore G ∼= A4.

6. (10 pts) Let R be a commutative ring and I an ideal of R. The radical of I is defined as
√
I = {x ∈ R | xn ∈ I for some n ∈ Z+}.

Prove that
√
I is also an ideal in R.

Hint: If x, y ∈ R and m,n ∈ Z+ such that xm, yn ∈ I, try showing that (x+ y)m+n ∈ I.

First, note that 01 = 0 ∈ I, hence 0 ∈
√
I. Suppose x ∈

√
I and r ∈ R. Then xn ∈ I

for some n ∈ Z+. Then (rx)n = rnxn because R is commutative and rnxn ∈ I because I is

closed under multiplication by elements of R. Hence rx ∈
√
I. By commutativity, xr ∈

√
I.

Suppose x, y ∈
√
I. Then xm, yn ∈ I for some m,n ∈ Z+. We will show that (x+y)m+n ∈

I, and hence x+ y ∈
√
I. Since R is commutative, we can expand (x+ y)m+n the usual way:

(x+ y)m+n =
m+n∑

i=0

(
m+ n

i

)

xiym+n−i.

Notice that either i ≥ m or m+n−i ≥ n. So either xi or ym+n−i is in I. Hence xiym+n−i ∈ I.
Therefore

(
m+ n

i

)

xiym+n−i = xiym+n−i + xiym+n−i + · · ·+ xiym+n−i

︸ ︷︷ ︸

(m+n

i
) terms

∈ I,

because I is closed under addition. Therefore
m+n∑

i=0

(
m+ n

i

)

xiym+n−i ∈ I

also by closure under addition. So (x+ y)m+n ∈ I.

Finally, we will prove
√
I is closed under additive inverses. Let x ∈

√
I. Then xn ∈ I for

some n ∈ Z+. Clearly, x2n = xnxn ∈ I. Hence (−x)2n = x2n ∈ I. This shows −x ∈
√
I.

We can now conclude that
√
I is an ideal of R,

Remark: The argument with the binomial coefficients above is a bit subtle. In general,
you cannot assume that Z ⊆ R. For that matter, R may not even have a 1. But multiplica-
tion by a positive integer can always be interpreted as repeated addition in any ring. And
multiplication by a negative integer can be interpreted as repeated addition of the inverse.
The actual value of the coefficients really does not matter here, only that they do in fact
arise from counting the term xiym+n−i after distributing (x+ y)m+n.

Another remark: If we knew 1 ∈ R, then we would be able to say −1 ∈ R and hence if
x ∈

√
I, then −x = (−1)x ∈

√
I. But we were not given that R has an identity, and this is

why I needed to prove closure under additive inverses in a less direct way.



7. Extra credit problem. Let R be a commutative ring. Recall that an ideal I of R is finitely
generated if there is a subset A ⊆ I such that I is the smallest ideal of R that contains A.
We showed in that class that this means I is the intersection of all ideals J such that A ⊆ J .

A chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·
of R is called an ascending chain of ideals. The ring R is called a Noetherian ring if every
ascending chain of ideals is finite in the sense that is there is some N ∈ Z+ such that

IN = IN+1 = IN+2 = · · ·
Let us call R a green mamba ring if every ideal of R is finitely generated.
(a) (6 pts) Prove that if R is a green mamba ring, then R is Noetherian.

Hint: Use that the union of an ascending chain of ideals is an ideal, and therefore must
be finitely generated.

Suppose R is a green mamba ring. Let

I1 ⊆ I2 ⊆ I3 ⊆ · · ·
be an ascending chain of ideals of R. Let

I =
∞⋃

k=1

Ik.

We proved in class that any chain of ideals totally ordered by inclusion is an ideal.
An ascending chain is just a special case of such a general chain with countably many
elements. So I is an ideal of R. Hence I must be finitely generated. That is I =
(x1, x2, . . . , xn) for some x1, x2, . . . , xn ∈ I. Then each xi must be in some ideal in the
chain, so there exists some ki ∈ Z+ such that xi ∈ Iki . Let N = max(k1, k2, . . . , kn).
Then xi ∈ Iki ⊆ IN . So IN contains all of the xi. By definition, I is the smallest
ideal that contains {x1, x2, . . . , xn}. So I ⊆ IN . Obviously, I also contains IN , and so
I = IN . Now, for any integer m ≥ N , IN ⊆ Im ⊆ I = IN , hence Im = IN . Therefore
the ascending chain is no longer increasing after the N -th term, that is it is finite.

(b) (9 pts) Let R now be a commutative ring with 1 6= 0. Prove that if R is not a green
mamba ring, that is R contains some ideal that is not finitely generated, then R contains
a maximal non-finitely generated ideal.

Hint: Isn’t it a bit funny that Prof. Zorn’s first name was Max? Could that be short
for Maximal? Consider the set S of all ideal of R that are not finitely generated, and
partially order S by inclusion. The trick is to prove the union of a chain is not finitely
generated. Some of the ideas used to prove part (a) may work here too.

Suppose R is not a green mamba ring. Then there exists some ideal I in R that is not
finitely generated. Let S be the set of all ideals of R that are not finitely generated.
Partially order S by inclusion. We will show that every chain in S has an upper bound.
Let C be a chain in S. Let I =

⋃

I∈C I. We proved in class that the union of a chain
ordered by inclusion is an ideal, so I is an ideal of R. We need to prove that I is not
finitely generated. Suppose I were finitely generated. So I = (x1, x2, . . . , xn) for some
x1, x2, . . . , xn ∈ I. Then each xj must be in some ideal Ij in C. Consider the finite
subset T = {I1, I2, . . . , In} of S. It is totally ordered (since it is a subset of S, and it is
finite, hence it must have a largest element Im. This Im contains all of x1, x2, . . . , xn,
and so I = (x1, x2, . . . , xn) ⊆ Im. But Im is obviously also a subset of I. Hence Im = I.
But this contradicts that the elements of S are ideals that are not finitely generated.



Therefore I is an ideal than cannot be finitely generated and is therefore an element of
S and obviously an upper bound of the chain C.
Since every chain in S has an upper bound, S must have a maximal element by Zorn’s
Lemma. That element is a maximal non-finitely generated ideal.

Remark: So what does this have to do with Noetherian rings? It is in fact possible to
prove in a Noetherian ring, every ideal is finitely generated. In other words, Noetherian
rings are the same thing as green mamba rings. Perhaps this is why green mamba
rings never became standard terminology. The proof is tricky and involves a few more
rounds of Zorn’s Lemma and the Axiom Choice. Showing that if there is a non-finitely
generated ideal, then there is a maximal non-finitely generated ideal is often the initial
step in the argument.


