
FINITE LINEAR QUOTIENTS OF B3 OF LOW DIMENSION

ERIC C. ROWELL AND IMRE TUBA

Abstract. We study the problem of deciding whether or not the image of an
irreducible representation of the braid group B3 of degree ≤ 5 has finite image if
we are only given the eigenvalues of a generator. We provide a partial algorithm
that determines when the images are finite or infinite in all but finitely many
cases, and use these results to study examples coming from quantum groups.
Our technique uses two classification theorems and the computational group
theory package GAP.

1. Introduction

Let B3 denote Artin’s braid group on 3 strands with generators σ1 σ2, satisfying

σ1σ2σ1 = σ2σ1σ2.

We consider the following problem. Suppose φ : B3 → GL(V ) is a d-dimensional
complex representation for which we are given:

(1) ρ is irreducible and
(2) Spec(ρ(σ1)) = {λ1, . . . , λd}.

Can we determine if G := ρ(B3) is a finite or infinite group from this information?
In this paper we determine some conditions under which G is finite or infinite,
assuming that d ≤ 5.

The general question of determining the image of complex braid group repre-
sentations seems first to have been studied by Jones [7] for the representations
associated with the Jones polynomial. Indeed, the Burau representation was es-
sentially the only representation of Bn that was known until the 1980s. More
recently this question has been studied extensively for unitary representations ob-
tained from solutions to the Yang-Baxter equation [3], Hecke algebras [4, 5], and
BMW-algebras [9, 8]. In all of these cases one has a tower of (generally reducible)
representations ρn such that

ρ3(B3) ⊂ · · · ⊂ ρn(Bn) ⊂ ρn+1(Bn+1) ⊂ · · · .

So clearly it is enough to show that ρ3(B3) is infinite to conclude the same for the
tower. One motivating application of this is to answer the question of universality
in the setting of topological quantum computation (see [5]).
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A generalization of the above towers of representations comes from ribbon cat-

egories, see [14] for the definition. For any object X in a ribbon category C one
obtains a tower of representations of Bn acting on End(X⊗n). If the object is a
self-dual object (i.e. X ∼= X∗) then B3 acts on V = Hom(X,X⊗3), often irre-
ducibly. As an application, we will apply our results to ribbon categories coming
from quantum groups in Section 6.

2. Main Result

Throughout this paper let ρ : B3 → GL(V ) be a d-dimensional irreducible
representation with 2 ≤ d ≤ 5 and set A = ρ(σ1) and B = ρ(σ2). Let G denote
the image ρ(B3) = 〈A,B〉 i.e. the group generated by A and B and define S :=
Spec(A) = Spec(B). The analysis naturally breaks into imprimitive and primitive
cases (defined in Section 3). Our results are summarized in the following:

Theorem 2.1. Let ρ, G, A and S be defined as in the previous paragraph. Let

S = {λ1, . . . , λd}, and define the projective order of A by

po(A) := min{t : (λ1)
t = (λ2)

t = · · · = (λd)
t}.

We use the convention that each successive statement excludes the hypotheses of

all of the preceding cases.

(a) Suppose some λi is not a root of unity, or λi = λj for some i 6= j. Then G
is infinite.

(b) Suppose po(A) ≤ 5. Then G is finite.

(c) Suppose G is imprimitive. Then S is of the form:

(i) {±χ, α} or χ{1, ω, ω2} ∪ {α} with ω a primitive 3rd root of unity and

G is finite or

(ii) {±r,±s}. In this case if u = r/s is a root of unity of order o(u) ∈
{7, 8, 9} ∪ [11,∞) then G is infinite, if o(u) = 6, G is finite and if

o(u) = 5 or 10 one cannot decide |G| without further information.

(d) Suppose G is primitive. Then:

(i) If d = 2 then G is infinite.

(ii) If d = 3 and po(A) ≥ 8 then G is infinite. If po(A) = 7, and 1

λ1

S

is Galois conjugate to {1, e2πi/7, e2kπi/7} with k even, G is infinite,

whereas if k is odd, G is finite.

(iii) If d = 4 and po(A) 6∈ {6, . . . , 10, 12, 15, 20, 24} then G is infinite.

(iv) If d = 5 and po(A) ∈ {7, 8} ∪ [13,∞) then G is infinite.

Remark 2.2. Notice that this theorem covers all but the following cases: G
primitive with

(1) d = 4 with po(A) ∈ {6, . . . , 10, 12, 15, 20, 24}.
(2) d = 5 with po(A) ∈ {6, 9, 10, 11, 12}.
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So Theorem 2.1 can be used as an algorithm to decide the if G is finite or not, at
least for d ≤ 3 or G imprimitive.

There are two main ingredients to our approach. Necessary conditions can be
derived from the classification of finite primitive linear groups of low degree (see
[2]), while sufficient conditions can often be gleaned from the following classifica-
tion of irreducible representations of B3 for 2 ≤ d ≤ 5 found in [15]:

Theorem 2.3 (Tuba-Wenzl). (1) Suppose ρ is an irreducible representation of

B3 with eigenvalues S = {λ1, . . . , λd} as above. Then,

(a) ρ is uniquely determined up to equivalence by S up to a choice of γ2

for d = 4 and a choice of γ for d = 5 where γ := det(A)1/d.

(b) there exists a basis for Cd so that the matrices A and B are in a

triangular form, given in [15].
(2) There exists an irreducible representation of B3 with eigenvalues S if only

if the λi and γ do not satisfy certain polynomials. In particular for d = 3
and d = 4 these polynomials are:

(a) d = 3 λ2
r + λsλt for r, s, t distinct and

(b) d = 4 (λ2
r + γ2)(γ2 + λrλs + λtλu) for r, s, t, u distinct.

We will refer to this theorem as the TW classification.

3. General Results

In this section we state some general results that will be used later.

Lemma 3.1. Suppose |G| < ∞. Then, S consists of d distinct roots of unity.

Proof. It is clear that if A is of finite order, it is diagonalizable and its eigenvalues
must be roots of unity. Corollary 2.2 of [15] states that the minimal and charac-
teristic polynomials of A coincide (for d ≤ 5) so that the eigenvalues of A must
also be distinct. �

The following result due to Coxeter [1] dates back to the 1950s:

Proposition 3.2. The quotient of Bn by the normal subgroup generated by σp
1 is

finite if and only if 1/p + 1/n > 1/2. In particular, the quotient of B3 by the

normal subgroup generated by σp
1 is finite if and only if p = 2, 3, 4 or 5, where the

quotient groups are

B3/〈σ
p
1〉 ∼=



























S3 p = 2

SL(2, 3) p = 3

H p = 4

SL(2, 5) × Z5 p = 5

(3.3)

where H is a non-split central extension of S4 by Z4.
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We have the following immediate consequence:

Corollary 3.4. If S ⊂ χ{ζ i
p : i = 1...p} where χ is any root of unity and ζp is a

primitive pth root of unity with 2 ≤ p ≤ 5 then |G| is finite.

Proof. The given hypotheses imply that G is contained in a central extension of
a quotient of one of the finite groups in (3.3) by the finite cyclic group generated
by χ. �

Irreducible finite linear groups naturally break up into two distinct classes: prim-
itive and imprimitive groups.

Definition 3.5. A linear group Γ ⊂ GL(V ) is imprimitive if V is irreducible and
can be expressed as a direct sum of subspaces Vi which Γ permutes nontrivially.
Otherwise, we say that Γ is primitive.

The following observation can be found in [9]:

Lemma 3.6. Suppose G is an irreducible imprimitive finite linear group of di-

mension d. Then S contains a C-coset of the group Cr = {ζ i
r : 0 ≤ i ≤ r − 1} of

roots of unity of degree 2 ≤ r ≤ d.

The imprimitive linear groups that appear as images of irreducible representa-
tions of B3 will be analyzed in Section 4, and the primitive cases will be covered
in Section 5.

4. Imprimitive Groups

For 2 ≤ d ≤ 5, there are only two ways that a group Γ ⊂ GL(V ) can be
imprimitive:

Case (1) d = 4 and V = V1 ⊕ V2 with dim(Vi) = 2 and Γ permutes V1 and V2

non-trivially and this block structure has no refinement to 1 × 1 blocks or
Case (2) Γ is isomorphic to a monomial group, i.e. a subgroup of M(d) := Sd ⋉D(d)

where D(d) is the group of d×d diagonal matrices and Sd is identified with
the d×d permutation matrices, and acts of D(d) by permuting the entries.

Case (2) is covered by the following:

Theorem 4.1. Let 2 ≤ d ≤ 5, and assume S consists of roots of unity. If G is an

irreducible imprimitive monomial group then S is of the form:

(a) S = χ{ζ i
d : 1 ≤ i ≤ d},

(b) S = {α,±χ} or

(c) S = {α} ∪ χ{1, ζ3, ζ
2
3}

In each of these cases G is finite.

Proof. Since G is monomial, we may assume that its generators A and B are of the
form A = D1P1, B = D2P2 where Di is a diagonal matrix and Pi is a permutation
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Table 1. Intransitive Cases

d P1 P2

4 (1, 2) (1, i) or (2, j)
4 (1, 2)(3, 4) P1

5 (1, 2) (1, i) or (2, j)
5 (1, 2)(3, 4) (1, 2)(j, k) or (3, 4)(r, s)
5 (1, 2, 3) P1, (1, j, 2), (2, j, 3) or (1, 3, j) j = 4 or 5
5 (1, 2, 3)(4, 5) P1

5 (1, 2, 3, 4) (i, j, k, ℓ) ∈ S4 \ {P
−1
1 }

matrix. For each choice of P1 the form of S is determined by the disjoint cycle
decomposition of P1, i.e. if P1 has an r-cycle in its decomposition, S will contain
a coset of the rth roots of unity.

First suppose S is not of one of the forms (a)-(c). It is clear that G is reducible
if the action of g := 〈P1, P2〉 on the standard basis for Cd is intransitive, since the
span of any orbit will be an invariant subspace for G. For the excluded cases we
may assume either d = 4 and P1 is (1, 2) or (1, 2)(3, 4), or d = 5 and P1 is (1, 2),
(1, 2, 3), (1, 2)(3, 4), (1, 2, 3)(4, 5) or (1, 2, 3, 4). One then uses the braid relation
to determine the possible cycle forms of P2. We record them in Table 1 in disjoint
cycle notation. In each case it is clear that P1 and P2 generate an intransitive
subgroup of Sd.

If S is as in (a), Corollary 3.4 immediately implies G is finite. For case (b)
observe that the matrices A2 and B2 are diagonal matrices whose entries are roots
of unity. Moreover, conjugation by A and B permutes the entries of A2 and B2.
So the normal subgroup generated by A2 and B2 is a finite group, of finite index
by Proposition 3.2. Thus G is finite in this case. Case (c) is analogous: the finite
index normal subgroup generated by A3 and B3 is finite. �

Now consider Case (1), so that A and B permute two dimension 2 vector spaces
V1 and V2. Since G is assumed to be irreducible, by choosing an ordered basis
consisting of the union of bases of V1 and V2, we may assume either A or B
is block skew-diagonal with blocks of size 2. Otherwise both A and B would
be block diagonal with respect to this basis, violating irreducibility. Now the
characteristic polynomial of such a block skew-diagonal matrix is a polynomial in
x2, so that eigenvalues occur in pairs ±r and ±s. If V1 ⊕ V2 has a refinement
to 1 × 1 blocks then S = χ{±1,±i} and is covered by Corollary 3.4. Thus we
may assume S = {±r,±s} with r/s not a 4th root of unity. For each pair (r, s)
there are two inequivalent irreducible 4-dimensional representations of B3 with

S = {±r,±s} depending on a choice of D = ±
√

λ2λ3/(λ1λ4) = ±1 (see [15, Prop.
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2.6]). Setting

p1(u, t) := u2t4 + (u + u2 + u3)t3 + (1 + 2u + 2u2 + 2u3 + u4)t2 + (u + u2 + u3)t + u2

we have the following:

Theorem 4.2. Suppose G is imprimitive and irreducible with unrefinable blocks

of size 2 so that S = {±r,±s} with u = r/s not a 4th root of unity. Denote the

order of u by o(u). Then:

(a) The characteristic polynomial of AB−1 is either p1(u, t)/u2 or p1(−u, t)/u2

where D = −1 corresponds to p1(u, t)/u2 and D = 1 corresponds to

p1(−u, t)/u2.

(b) If o(u) 6∈ {3, 5, 6, 10}, then G is infinite.

(c) If (D, o(u)) ∈ {(1, 5), (−1, 10), (1, 3), (−1, 6)}, G is infinite.

(d) If (D, o(u)) ∈ {(−1, 5), (1, 10), (−1, 3), (1, 6)} G is finite.

Proof. We may replace A by 1

s
A and B by 1

s
B without changing the finiteness of

G or the characteristic polynomial of AB−1, and doing so we obtain the following
matrices from [15]:

A =











1 −(D−2 + D−1 + 1) (D−2 + D−1 + 1) u −u
0 −1 (D−1 + 1) u −u
0 0 u −u
0 0 0 −u











and

B =











−u 0 0 0
−u u 0 0
−D D + 1 −1 0
−D3 D3 + D2 + D −D2 − D − 1 1











and (a) follows by computation. If the eigenvalues of AB−1 are not roots of unity
then G is infinite. Let us assume that D = −1 and the roots t of p1 (i.e. the
eigenvalues of AB−1) are roots of unity. Set x = t + 1/t and y = u + 1/u and
consider p1(u, t)/(ut)2 = x2 + (y + 1)x + (y2 − 2 + 2y). By applying a Galois
automorphism of the field Q[u, t] we may assume that u = e2πi/ℓ for ℓ = o(u).
Notice that y = 2ℜ(u) = 2 cos(2π/ℓ). If we assume ℓ > 6 then y > 1, and the
discriminant of x2 + (y + 1)x + (y2 − 2 + 2y) is: −3y2 − 6y + 9 < 0 so that x 6∈ R,
contradicting x = 2ℜ(t). Next assume D = 1. The argument is essentially the
same, except we get the polynomial x2 +(1−y)x+(y2−2−2y) with discriminant
9 − 3y2 + 6y when we replace u by −u in p1. Using a Galois automorphism we
may assume that u = e2πik/ℓ where k is chosen so that u is nearest −1. Now
y = 2ℜ(u) < −1 provided ℓ > 4 and ℓ 6= 6 or 10, the latter exclusion coming from
the fact that the primitive 10th root of unity nearest −1 is e6πi/10 which has real
part − cos(2π/5) > −1/2. Again, one obtains a contradiction since 9−3y2+6y < 0
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contradicting x ∈ R. For the cases (D, o(u)) = (1, 3) or (−1, 6) one checks by direct
computation that AB−1 has infinite order. This proves (b) and (c).

For (d) with o(u) = 5 or 10 we consider the normal subgroup H generated by
A5 and B5. Observe that H is of finite index by the result of Coxeter above.

A set of generators for H is {A5, B5, AB5A−1, BA5B−1}. Set M :=

(

1 −1
0 −1

)

,

N :=

(

−1 0
−1 1

)

and T :=

(

0 1
1 0

)

. Then if o(u) = 5 and D = −1 we compute

A5 = M ⊕M , B5 = N ⊕N and AB5A−1 = BA5B−1 = T ⊕ T . One can easily see
that M,N and T generate S3, from which it follows that G is finite. For the case
D = 1 and o(u) = 10 the matrices involved are slightly more complicated, such

as

(

1 −3
0 −1

)

,

(

−2 3
−1 2

)

and

(

1 0
1 −1

)

and their transposes, but give an equivalent

representation of S3 and we conclude that G is finite in this case as well. For
(d) with o(u) = 3 or 6, we observe that the projective order of A is 6, and the
element AB−1 also has projective order 6. These together with the braid relation
ABA = BAB are enough to conclude that, modulo the center, G is a quotient of
a group of order 648.

�

This completes the proof of Theorem 2.1(c).

5. Primitive Groups

In this section we assume that G is a finite primitive irreducible group. Then by
rescaling A and B by a choice of root of unity (det(A))−1/d, we may assume that
G is unimodular without changing po(A). Thus we can determine the possible
values of po(A) by computing the projective orders of elements in the groups on
Feit’s list of finite unimodular primitive irreducible linear groups of degree 5 or
less [2].

Lemma 5.1. Suppose g is an element in a primitive unimodular irreducible finite

group H of dimension 2 ≤ d ≤ 5 and let t be the order of g modulo Z(H). Then

(a) if d = 2, 1 ≤ t ≤ 5,
(b) if d = 3, 1 ≤ t ≤ 7,
(c) if d = 4, t ∈ {1, . . . , 10, 12, 15, 20, 24} and

(d) if d = 5, t ∈ {1, . . . , 6, 9, . . . , 12}.

Proof. The list of such primitive unimodular irreducible finite groups is given in
[2, Section 8.5], and the only work to do is to construct the groups using [6] and
compute the orders of elements in the quotient H/Z(H). Modulo their centers,
the dimension 2 groups are S4, A4, and A5, and for d = 3 one has A5, A6, PSL(2, 7)
and subgroups of the Hessian group of order 216. For d = 4 there are 11 types
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of groups. Four of these come from direct products of dimension 2 linear groups
and their extensions by an order 2 outer automorphism. One also has the explicit
groups A5, S5, A6, S6, A7, SL(2, 5), SL(2, 7) and Sp(4, 3). The last class of dimen-
sion 4 groups are certain subgroups of extraspecial 2-groups of order 25 by their
automorphism groups. For d = 5 Feit’s list yields the following groups (with trivial
centers):

(1) Subgroups of SL(2, 5) ⋉ (Z5 × Z5): orders (1, 2, 3, 4, 5, 6, 10)
(2) A5: orders (1, 2, 3, 5)
(3) S5: orders (1, 2, 3, 4, 5, 6)
(4) A6: orders (1, 2, 3, 4, 5)
(5) S6: orders (1, 2, 3, 4, 5, 6)
(6) PSp(4, 3): orders (1, 2, 3, 4, 5, 6, 9, 12)
(7) PSL(2, 11): orders (1, 2, 3, 5, 6, 11)

To illustrate how one uses GAP to get the information listed in the theorem,
we give the following sample code for determining the possible orders in the class
of 4 dimensional groups mentioned above.:

gap> H:=ExtraspecialGroup(32,"-");

<pc group of size 32 with 5 generators>

gap> T:=AutomorphismGroup(H);

<group of size 1920 with 2 generators>

gap> M:=SemidirectProduct(T,H);

<permutation group with 7 generators>

gap> N:=M/Center(M);

<permutation group of size 30720 with 11 generators>

gap> s:=Elements(N);;

gap> ords:=List(s,Order);;

gap> Set(ords);

[ 1, 2, 3, 4, 5, 6, 8, 12 ]
�

Parts (i),(iii) and (iv) of Theorem 2.1(d) are immediate from Lemma 5.1. We
proceed by cases to prove part (ii).

Proof. (of Theorem 2.1(d)(ii)). For d = 3, Lemma 5.1 implies that G is infinite if
po(A) ≥ 8, so we need only consider ℓ := po(A) = 6 and 7. Let S = {λ1, λ2, λ3}.
Clearly G is finite and irreducible if and only if the group generated by A/λ1 and
B/λ1 is finite and irreducible, so we may assume S = {1, θ, φ}. By applying a
Galois automorphism we may further assume that θ = e2πi/ℓ and φ = θk with
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2 ≤ k ≤ ℓ − 1. From [15, Proposition 2.5] we obtain:

A =







1 φ/θ + θ θ
0 θ θ
0 0 φ





 , B =







φ 0 0
−θ θ 0
θ −φ/θ − θ 1





 .

If po(A) = 6, the cases k = 2, 5 correspond to reducible representations (with
infinite image as is evident from the Jordan form of AB−1), since θ · 1 + φ2 =
eπi/3 + e2kπi/3 = 0 for k = 2, 5. For k = 3, 4 the eigenvalues case are ±1, eπi/3

and 1,±eπi/3 respectively. Theorem 4.1 suggests these give us imprimitive groups.
Writing down the A and B matrices in monomial form one checks easily that
they have no common eigenvector and hence the representation is irreducible and
imprimitive. Thus po(A) = 6 implies G is either reducible or imprimitive.

If po(A) = 7, the cases k = 2, 4 or 6 each give infinite groups as can be seen either
by checking that the eigenvalues of AB−1 are not roots of unity, or by observing
that that the only dimension 3 irreducible imprimitive group with elements of
order 7 is PSL(2, 7), which also has elements of orders 1, 2, 3 and 4. So we need
only check that AB−1 does not have one of these orders, and for k = 2, 4 or 6 this
computation yields the desired result. For k = 3, 5 one finds that (AB−1)4 = I
which, together with the braid relation and A7 = B7 = I, is enough to show that
G is a quotient of a group of order 1176 and hence finite. �

This completes the proof of Theorem 2.1(d).

Remark 5.2. We would like to point out the limitations of our approach, in par-
ticular why we do not get complete results for dimensions 4 and 5 with G primitive.
Firstly, the representations are not uniquely determined by the eigenvalues: for
d = 4 there are two choices, and for d = 5 there are 5. Secondly, the sets of
eigenvalues S with po(A) = t for some t found in Lemma 5.1 can be quite large
particularly if t is composite. Finally, the only technique we have for showing
that G is infinite in these cases is to show that some element (such as AB−1) has
infinite order. Moreover, if the order happens to be finite, this relation might not
be sufficient to conclude that G is finite, in which case we must resort to further
ad hoc means. For d ≥ 6, there are further issues. A representation of degree 6 or
higher is not determined by S and γ. Moreover, the imprimitive cases are signif-
icantly more delicate. Given the eigenvalues of an irreducible representation ρ of
B3 of degree d = 6 or 7 one can sometimes use our approach as follows: first verify
that ρ(B3) is primitive by using Lemma 3.6. Then use Feit’s list [2] to determine
which po(A) can appear in finite linear groups of degree d. For example, if d = 7,
S does not contain a full coset of Cr ⊂ C, r ≤ 7 and p | po(A) for 13 6= p ≥ 11 a
prime, then ρ(B3) is infinite.
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6. Applications

We apply our results to ribbon categories obtained as subquotients of Rep(Uqg)
where q = eπi/ℓ, see [14] for details. These categories will be denoted C(g, q, ℓ) as
in [12]. In particular the representation of B3 acting on Hom(V, V ⊗3) is irreducible
provided the eigenvalues of A are distinct by [15, Lemma 3.2]. We can compute
the eigenvalues by applying results of Reshetikhin found in [10, Corollary 2.22(3)].
Since the cases d = 2 and d = 3 were already considered in [5] and [9] respectively,
we focus on the cases d = 4 and 5. Since the order of G = ρ(B3) is invariant under
Galois automorphisms, we can safely assume q = eπi/ℓ without loss of generality.
The computation involves two steps: first we use standard Lie theory techniques to
decompose V ⊗2 as a direct sum of simple objects Vλi

. The eigenvalues of the action
of ρ(σ1) are then computed (up to an overall scale factor) as ±q〈λi+2δ,λi〉/2 where
the sign is positive if Vλi

appears in the symmetrization of V ⊗2 and is negative
otherwise, and δ is 1/2 the sum of the positive weights. In each case, there is a
lower bound on ℓ that ensures that the simple subobjects appearing in V ⊗2 are
legitimate objects in our category, i.e. are not removed in the truncation of the
dominant Weyl chamber. We must also check that the eigenvalues are distinct for
our choice of q.

Example 6.1. Let g = g2 and let V be the simple object labelled by λ1 = (ε1−ε3),
i.e. the highest weight of the 7 dimensional fundamental representation of g2.
First suppose that 3 | ℓ so that the corresponding category is a unitary modular
category (see [13]). Then if 18 ≤ ℓ, V ⊗2 decomposes as a direct sum of four
simple objects, and thus dim Hom(V, V ⊗3) = 4 and the image of σ1 has eigenvalues
{q−12, q2,−q−6,−1}. Thus the projective order of the image of σ1 is ℓ if ℓ is even
and 2ℓ if ℓ is odd. Thus by Theorem 2.1(d)(iii) the image of B3 is infinite unless
ℓ = 24.

Now suppose that 3 ∤ ℓ. In this case dim Hom(V, V ⊗3) = 4 as long as 10 ≤ ℓ.
The eigenvalues of the image of σ1 are as above, so that by Theorem 2.1(d)(iii)
the image of B3 is infinite unless ℓ = 10 or 20.

Example 6.2. Now let g = f4, and V be the simple object in C(f4, q, ℓ) analo-
gous to the vector representation of f4. First, suppose ℓ is even. Then if 22 ≤ ℓ,
dim Hom(V, V ⊗3) = 5 and the eigenvalues of the image of σ1 are {q−24, q−12, q2,−1,−q−6}.
Notice that these eigenvalues are distinct unless ℓ = 24. Thus Theorem 2.1(d) im-
plies that the image of B3 is infinite for ℓ = 22 or 26 ≤ ℓ since the projective
order of the image of σ1 is ℓ in these cases. In the case ℓ = 24 we have repeated
eigenvalues, hence either the representation is reducible or has infinite image.

Next assume that ℓ is odd. We have dim Hom(V, V ⊗3) = 5 when 15 ≤ ℓ, and
the projective order of the image of σ1 is 2ℓ so the image of B3 is again always
infinite by Theorem 2.1(d).
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Example 6.3. Consider g = so7 and let V be the simple object in C(so7, q, ℓ)
corresponding to the fundamental spin representation of so7. When ℓ is even and
14 ≤ ℓ we have dim Hom(V, V ⊗3) = 4 and the eigenvalues of the image of σ1 are
χ{1, q12,−q6,−q10}. Since q = eπi/ℓ with ℓ even, po(A) = ℓ/2 ≥ 7. So provided
ℓ/2 6∈ {7, 8, 9, 10, 12, 15, 15, 20, 24}, G is infinite. There are two representations

with these eigenvalues corresponding to the two choices of D = ±
√

λ2λ3

λ1λ4

= ±q4.

Choosing D = q4, we obtain the following matrices from [15]:

A =













1 (q8 + q4 + 1) q4 − q8+q4+1

q2 −q10

0 q12 − (q4 + 1) q2 −q10

0 0 −q6 −q10

0 0 0 −q10













B =











−q10 0 0 0
q6 −q6 0 0
q16 − (q4 + 1) q12 q12 0
−q12 q12 + q8 + q4 −q8 − q4 − 1 1











.

We first consider the case ℓ = 14. In this case we have A7 = B7 = I. We
compute that (projectively) (AB−1)4 = I. This implies that G is indeed finite!
We compute that |G/Z(G)| = 168 so that, projectively, G is PSL(2, 7). We further
note that there is an object U so that dim Hom(U, V ⊗3) = 3 and the corresponding
braid group representation is irreducible, given in [16]. The eigenvalues are (up to
scaling and Galois conjugation) {1, e2πi/7, e10πi/7} so that by Theorem 2.1(d)(ii),
this reprensentation also has finite image.

Next consider the case ℓ = 18. Under this substitution the eigenvalues are of the
form {1, ω, ω2, α} where ω is a primitive 3rd root of unity. So for either choice of
D we find that G is a finite imprimitive group by the converse of Theorem 2.1(c)(i)
and the TW classification.

Example 6.4. Consider g = so9 and let V be the simple object in C(so9, q, ℓ)
corresponding to the fundamental spin representation of so9. When ℓ is even and
18 ≤ ℓ we have dim Hom(V, V ⊗3) = 5 and the eigenvalues of the image of σ1 are
χ{1, q8,−q14,−q18, q20}, and γ = det(A)1/5 = ζ5q

12 where ζ5 is a primitive 5th
root of unity. For simplicity we will assume γ = q12, although this assumption
certainly can affect |G|.

For ℓ = 18 the matrix A has repeated eigenvalues, (namely 1 and −q18 = 1)
so Lemma 3.2 of [15] fails and we cannot conclude that the representation is
irreducible in this case. In fact, the image for ℓ = 18 satisfies relations A9 = B9 =
(A4(ABA)A5(ABA))2 projectively. This, together with the braid relation, implies
that the projective image G is a quotient of a group of order 324. It follows that
the representation is reducible, since any such group cannot have an irreducible
representation of dimension 5.
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For ℓ ≥ 20 one does have distinct eigenvalues, so that the corresponding rep-
resentation is irreducible. We see that po(A) = ℓ/2 in these cases, so provided
ℓ/2 6∈ {10, 11, 12} G is infinite. The matrices, A and B we obtain are:














1 q8 − q6 + q4 − q2 −q14 + q12 − 2 q10 + q8 − q6 −q16 + q14 − q12 + q10 q16

0 q8 −q14 + q12 − q10 −q16 + q14 − q12 q16

0 0 −q14 −q16 + q14 q16

0 0 0 −q18 q18

0 0 0 0 q20





























q20 0 0 0 0
q18 −q18 0 0 0
q16 −q16 + q14 −q14 0 0
q16 −q16 + q14 − q12 −q14 + q12 − q10 q8 0
q16 −q16 + q14 − q12 + q10 −q14 + q12 − 2 q10 + q8 − q6 q8 − q6 + q4 − q2 1















.

The case ℓ = 22 is interesting: If we set S = A and T = ABA, we find that the
PSL(2, 11) relations S11 = T 2 = (S4TS6T )2 = I hold (projectively), so that the
projective image of G is PSL(2, 11). This is not too surprising since PSL(2, Z) is
a quotient of B3. The cases ℓ = 20 and ℓ = 24 do not yield finite groups. (One
can check that the order of AB−1 is larger than possible according to Feit’s list.)
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