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ABSTRACT OF THE DISSERTATION

Braid Representations and Tensor Categories

by

Imre Tuba

Doctor of Philosophy in Mathematics

University of California San Diego, 2000

Professor Hans Wenzl, Chair

We classify all simple representations of the braid group B3 with dimension d ≤ 5

over any algebraically closed field. In particular, we prove that a simple d-dimensional

representation ρ : B3 → GL(V ) is determined up to isomorphism by the eigenvalues

λ1, λ2, . . . , λd of the image of the generators σ1 and σ2 for d = 2, 3 and a choice of a

δ =
√

det ρ(σ1) for d = 4 or a choice of δ = 5
√

det ρ(σ1) for d = 5. We also showed

that such representations exist whenever the eigenvalues and δ are not zeros of certain

explicitly given rational functions Q
(d)
ij . In this case, we construct the matrices via which

the generators act on V .

We go on to give a necessary and sufficient condition for the unitarizability of

simple representations of B3 on complex vector spaces of dimension d ≤ 5. We show

that a simple representation ρ : B3 → GL(V ) (for dimV ≤ 5) is unitarizable if and only

if the eigenvalues λ1, λ2, . . . , λd of ρ(σ1) are distinct, satisfy |λi| = 1 and µ
(d)
i1 > 0 for

2 ≤ i ≤ d, where the µ
(d)
i1 are functions of the eigenvalues, related to Q

(d)
ij .

Finally, we describe how these results can be used to compute categorical dimen-

sions of objects in braided tensor categories and give an example of such a computation.

ix



Chapter 1

Introduction

Braids were first studied by Emil Artin in 1926. He later introduced the braid

group Bn in [2] arising from his geometric construction of braids. We will give a purely

algebraic definition instead. Bn is generated by the n − 1 generators σ1, σ2, . . . , σn−1

subject to the braid relations:

σiσj = σjσi if |i − j| 6= 1

σiσi+1σi = σi+1σiσi+1.

Bn can be visualized as the braiding on n strings by identifying σi with crossing

the i-th string over the i + 1-st string.

A
A
A

.....................

��
. . . . . .

n1 i i + 1

σi

Figure 1.1: A generator of Bn

Note that the braid relations imply (σiσi+1)σi (σiσi+1)
−1 = σi+1, that is all of

the generators are in the same conjugacy class. Furthermore, it is easy to see that the
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full twist ∆2
n = (σn−1 . . . σ1)

n is central. It is not obvious but ∆2
n actually generates the

center (see p. 28 in [3] for a proof).
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∆2
3

Figure 1.2: The full twist in B3

It is worth noting that B3/Z(B3) ∼= PSL2(Z) where PSL2(Z) = SL2(Z)/Z(SL2(Z))

via the map

σ1 7→




1 1

0 1



 σ2 7→




1 0

−1 1



 .

Hence any representations of B3 easily give rise to representations of SL2(Z) and PSL2(Z)

and vice versa. PSL2(Z) is also isomorphic to the free product Z2 ∗ Z3.

Representations of the braid group appear in many places in topology and

algebra. In particular, my interest in braid representations derives from their applications

to braided tensor categories.



Chapter 2

Simple Representations of

Dimension d ≤ 5

2.1 Introduction

In this chapter, we will characterize all simple representations of B3 of dimen-

sion d ≤ 5. We will mostly follow the argument presented in [11] with some variations.

Suppose ρ : B3 → GL(V ) is such a simple representation of B3 on the d-

dimensional vector space V over an algebraically closed field F of any characteristic.

Denote the images of σ1 and σ2 by A and B. In general, we will talk about V as a

B3-module, where B3 acts on V via ρ.

Then A and B are invertible d × d matrices with entries in F . They satisfy

ABA = BAB and

Proposition 2.1.

a) B = (AB)A (AB)−1 = (ABA)A (ABA)−1 and A = (BA)A (BA)−1 =

(ABA)A (ABA)−1.

b) The eigenvalues of A and B are the same.

c) If {a1, a2, . . . , ad} is a basis of eigenvectors of A, then {b1, b2, . . . , bd} with bi =

(ABA) ai is a basis of eigenvectors of B.

d) (ABA)2 = (AB)3 = δ I where δ = det(A)6/d. Hence (ABA)−1 = δ−1(ABA) .

3
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e) The map ρ′ : B3 → GL(V ) defined by ρ′(σ1) = δ−1/6A and ρ′(σ2) = δ−1/6B is

still a representation of B3 for any choice of the sixth root. It has the property

det(ρ′(σi)) = 1 for i = 1, 2.

Proof: (a) follows from the corresponding relations in B3. (b) and (c) follow from (a).

Note that A and B generate all of Md(F ) as ρ is assumed to be a simple representation.

We know (σ1σ2)
3 is in the center of B3, so (AB)3 is in the center of Md(F ), hence it is a

scalar matrix δ I. Observe that δd = det(δ I) = det(AB)3 = det(A)6 by (a). This proves

(d). (e) is obvious.

2.2 A Particularly Nice Example

The key observation, motivated by the following example that will enable us to

compute A and B is that we can assume them to be in a special form.

Example 2.2. Only in this example, we will index the basis starting with 0 and we will

redefine i = d − i. So let V be a d + 1-dimensional vector space with {v0, v1, . . . , vd} as

a basis and λiλi = γ 6= 0 for some fixed γ ∈ F and 0 ≤ i ≤ d.

A =

((
i

j

)

λj

)

ij

=














λ0

(
d

d−1

)
λ1

(
d

d−2

)
λ2 · · · λd

λ1

(
d−1
d−2

)
λ2 · · · λd

λ2
...

. . .
...

λd














and

B =

(

(−1)i+j

(
i

j

)

λi

)

ij

=













λd

−λd−1 λd−1

...
. . .

(−1)d−1 λ1 (−1)d
(
d−1
1

)
λ1 · · · λ1

(−1)d λ0 (−1)d+1
(
d
1

)
λ0 (−1)d+2

(
d
2

)
λ0 · · · λ0













satisfy ABA = BAB, and hence yield a representation of B3.
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Proof: By direct computation and Lemma 2.3,

(AB)ij =
d∑

k=0

(−1)k+j

(
i

k

)

λk

(
k

j

)

λk = (−1)d+j

(
i

j

)

γ.

This shows that AB is lower skew-diagonal, that is (AB)ij = 0 for i < j.

Let

S′ =













λd

−λd−1

λd−2

(−1)dλ0













.

Note S′2 = (−1)d γ I, hence

S′−1
= (−1)d γ−1 S =













(−1)dλ−1
0

λ−1
d−2

−λ−1
d−1

λ−1
d













.

By the above, λi (AB)ii = (−1)i γ λi = γ S′
ii
. Let S = γS′.

Also,

(SAS−1)ij = S′ A S′−1
= (−1)i λi Aij (−1)j λ−1

j
=

(−1)i+j λi

λj

(
i

j

)

λj = Bij

Thus A, B and S satisfy the conditions of Lemma 2.11.

Lemma 2.3. For 0 ≤ i, j ≤ d,

d∑

k=0

(−1)k

(
d − i

k

)(
d − k

j

)

=

(
i

d − j

)

.

Proof: Expand

(1 + x)i ((1 + x) + y)n−i = (1 + x)i
n−i∑

k=0

(
n − i

k

)

yk (1 + x)n−i−k =
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n−i∑

k=0

(
n − i

k

)

yk (1 + x)n−k =
n−i∑

k=0

n−k∑

l=0

(
n − i

k

)(
n − k

l

)

ykxl.

Now substitute y = −1:

(1 + x)i xn−i =

n−i∑

k=0

n−k∑

l=0

(
n − i

k

)(
n − k

l

)

(−1)k xl.

Also

(1 + x)i xn−i =
i∑

k=0

(
i

k

)

xi−kxn−i =
i∑

k=0

(
i

k

)

xn−k.

Now equating coefficients of xj results in the desired identity.

2.3 Preliminary Results

Definition 2.4. We will say that A and B are in ordered triangular form if A is upper

triangular with the λ1, λ2, . . . , λd down its diagonal, while B is lower triangular with

λd, λd−1, . . . , λ1 down its diagonal.

We will eventually prove that A and B can be assumed to be in ordered trian-

gular form without any loss of generality. But first, we need a few auxiliary results.

Let λ1, λ2, . . . , λd be the (not necessarily distinct) eigenvalues of A with corre-

sponding (generalized) eigenvectors a1, a2, . . . , ad. By Proposition 2.1, they are also the

eigenvalues of B corresponding to the (generalized) eigenvectors bi = ABA ai.

Lemma 2.5.

a) ρ(B3) = 〈A, B〉 = 〈A, AB〉 = 〈B, AB〉 = 〈A, ABA〉 = 〈B, ABA〉 = 〈AB, ABA〉

b) If I is any subset of {1, 2, . . . , d}, then W = span {ai | i ∈ I} ∩ span {bi | i ∈ I} is

invariant under ρ(B3).

Proof: (a) is an obvious consequence of the analogous statements for B3. For (b), note

that W is invariant under 〈A, B〉.

Lemma 2.6. Let V be a simple B3-module of dimension d ≥ 3 and V1 = span {a1, . . . , ad−1},
V2 = V1 ∩ (ABA)V1 and V3 = V1 ∩ (AB)V1 ∩ (AB)2 V1. Then V2 is ABA-invariant

and V3 is AB-invariant. Moreover V3 ( V2 ( V1 ( V and codim V1 = 1, codim V2 = 2,

and codim V3 = 3.
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Proof: The invariance statements are obvious. Note that (ABA) ai = λi (AB) ai, so

(ABA)V1 = (AB)V1. Hence V3 ⊆ V1 ∩ (AB)V1 = V2.

Note that codimV2 ≤ 2 as V2 is the intersection of two subspaces of codimension

1. If W = V2, then W = span {b1, . . . , bd−1}. But dimV1 = d−1, so V1 would be a proper

invariant subspace contradicting simplicity by Lemma 2.5. So V2 ( V1 and codimV2 = 2.

By the same logic, codim V3 ≤ 3. If V2 = V3, then V2 is a proper subspace

invariant under 〈ABA, AB〉 = ρ(B3), which contradicts simplicity. Hence V3 ( V2 and

codim V3 = 3.

Proposition 2.7. If V is a simple B3 module of dimension d ≤ 5 and W is a proper

subspace of V invariant under A or B then W cannot contain both ai and bi = (ABA) ai.

Proof: If W is a proper A-invariant subspace that contains ai and bi, then (ABA)W

is a proper B-invariant subspace that contains ai = δ−1 ABA bi and bi = ABA ai. So

we may assume without loss of generality that W is B-invariant by replacing it with

(ABA)W if necessary.

Suppose W is B-invariant and does contain both ai and bi. We are free to

reindex the eigenvalues if necessary, so we may assume without loss of generality that

i = 1. Let d′ = dim W . Extend b1 to a basis of generalized eigenvectors 〈b1, . . . , bd′〉 of

B on W , then extend to an eigenbasis of V . Let ai = (ABA)−1 bi = δ−1(ABA) bi. Let

V1 = span {b1, . . . , bd−1} and V2, V3 as in Lemma 2.6.

a1 ∈ W ⊆ V1. Hence a1 ∈ V2 = V1 ∩ span {a1, . . . , ad−1}. As V2 is ABA-

invariant, b1 = (ABA) a1 ∈ V2. In particular V2 6= 0.

By Lemma 2.6, dim V2 = d − 2, which immediately leads to contradiction if

d = 2.

If d = 3, then dimV2 = 1, so V2 = span {a1} = span {b1}, which contradicts

Lemma 2.5.

If d = 4, dimV2 = 2 and dimV3 = 1. If a1 ∈ V3, then V3 = span {a1}, so

V3 is invariant under 〈A, AB〉 = ρ(B3), which contradicts simplicity. So b1 ∈ V2 =

span {a1} + V3, that is b1 = αa1 + w for some α ∈ F and w ∈ V3. Then

(AB) b1 = AB(αa1 + w) = α(ABA)A−1a1 + (AB)w = λ−1
1 αb1 + (AB)w ∈ V2.

Hence V2 is invariant under 〈ABA, AB〉 = ρ(B3), which is again a contradiction.



8

If d = 5, the argument is similar. Now dimV2 = 3 and dimV3 = 2. If a1 ∈ V3,

then b1 = (ABA) a1 = λ1(AB) a1 ∈ V3 too. Hence V3 = span {a1, b1}, so V3 is invariant

under 〈AB, ABA〉 = ρ(B3) contradicting simplicity. Therefore V2 = span {a1} + V3 =

span {b1} + V3. Hence b1 = αa1 + w for some α ∈ F and w ∈ V3, and

(AB) b1 = AB(αa1 + w) = α(ABA)A−1a1 + (AB)w = λ−1
1 αb1 + (AB)w ∈ V2.

Thus V2 = span {b1} + V3 is a proper subspace invariant under 〈ABA, AB〉 = ρ(B3).

The statement about an A-invariant subspace follows either by a symmetric

argument, or simply by noting that (ABA)W would then be B-invariant and would still

contain ai and bi.

Lemma 2.8. If A is diagonalizable, then its eigenvalues are distinct.

Proof: Let A be diagonalizable. If all of the eigenvalues are the same, then A = λ I and

hence B = λ I. But then any subspace is invariant, so V must be 1-dimensional and the

statement holds.

Suppose not all eigenvalues are distinct. So we may assume without loss of

generality, that λ1 = λ2 and λd 6= λ1. Let b be an eigenvector of B that corresponds to

λd. Let W = span
{
Ai b | i = 0, . . . , d − 2

}
. Since the minimal polynomial has at most

degree d−1, W is A-invariant. Note that W = span
{
(A − λ1)

i b | i = 0, . . . , d − 2
}
. Let

wi = (A − λ1)
i b and n such that wn 6= 0 but wn+1 = 0.

Then it is easy to see that {w0, w1, . . . , wn} is a basis for W . Let α0w0 + . . . +

αnwn = 0. Multiply both sides by (A − λ1)
n to get α0w0 = 0, hence α0 = 0. Now

proceed by induction to conclude that αi = 0 for all i.

It is obvious that A acts as a full Jordan block with respect to this basis, hence

its eigenspace in W for λ1 is at most 1-dimensional. Let W ′ = W + span {ABA b}.
Since ABA b is an eigenvector of A corresponding to λd, A still cannot have two linearly

independent eigenvectors in W ′. Hence W ′ is a proper A-invariant subspace of V , which

contains b and ABA b, contradicting Proposition 2.7.

Proposition 2.9. The minimal polynomial of A (and B) is the characteristic polyno-

mial. In other words, the Jordan form of A consists of full Jordan blocks.
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Proof: If A is diagonalizable, the statement follows from Lemma 2.8. If not, assume the

minimal polynomial properly divides the characteristic polynomial, hence its degree is

at most d − 1.

Then A has an eigenvalue λ and a corresponding generalized eigenvector a such

that (A − λ)2 a = 0, and a′ = (A − λ) a 6= 0 is an eigenvector of A. Let b = ABA a′,

and W = span
{
Ai b | i = 0, . . . , d − 2

}
. Clearly, W is a proper A-invariant subspace

of V . By Proposition 2.7, W cannot contain a′. Hence it cannot contain a either. Let

W ′ = W +span {a′}. Then it is easy to see that a /∈ W ′, hence W ′ is a proper A invariant

subspace that contains b and δ−1a′ = ABA b. This would contradict Proposition 2.7.

Lemma 2.10. Let A and B be in ordered triangular form, and C ∈ GLd(F ).

a) If A = CBC−1 then C is upper skew-triangular, that is Cij = 0 for i + j > d + 1.

b) If B = CAC−1 then C is lower skew-triangular, that is Cij = 0 for i + j < d + 1.

In particular AB is lower skew-triangular, and BA is upper skew-triangular.

Proof: Let {v1, . . . , vd} be the standard basis for V = F d, and let Vn = span {v1, . . . , vn}
and Wn = span {vd−n+1, . . . , vd} for 1 ≤ n ≤ d. We will prove that A = CBC−1 implies

C Wn = Vn by induction. By the upper-triangular shape of A, v1 is an eigenvector of A

with eigenvalue λ1 and vd is an eigenvector of B with the same eigenvalue. Also, C−1 v1

is an eigenvector of B with eigenvalue λ1. We can conclude span
{
C−1 v1

}
= span {vd},

by Proposition 2.9. This establishes the base case.

Let λn+1 occur k times among λ1, . . . , λn. By Proposition 2.9, A acts as a

full Jordan block on its generalized eigenspaces. A has k generalized eigenvectors with

eigenvalue λn+1 in Vn, so they are all in the null space of (A − λn+1)
k. But A has

k +1 generalized eigenvectors in Vn+1, so (A−λn+1)
k vn+1 6= 0. An analogous argument

shows that (B − λn+1)
k vd−n 6= 0, but (B − λn+1)

k+1vd−n = 0. But B also consists of

full Jordan blocks, so any vector with this property must be in span {vd−n}. Clearly,

C−1 vn+1 is such a vector, so span
{
C−1 vn+1

}
= span {vd−n}. We can now use the

inductive hypothesis to conclude

C−1 Vn+1 = C−1 Vn + C−1 span {vn+1} = Wn + span {vd−n} = Wn+1.

Hence C Wn = Vn.
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From now on, let us denote d + 1 − i by i.

Lemma 2.11. Let A, B ∈ GLd(F ) such that A and B are in ordered triangular form

with eigenvalues λ1, . . . , λd ∈ F ∗. The following are equivalent:

a) There exists S ∈ GLd(F ) skew-diagonal with S2 = γ I for some γ ∈ F ∗ such that

B = SAS−1, (AB)ij = 0 for i + j < d + 1 and λi (AB)ii = Sii.

b) There exists S ∈ GLd(F ) skew-diagonal with S2 = γ I for some γ ∈ F ∗ such that

B = SAS−1, (BA)ij = 0 for i + j > d + 1 and λi (BA)ii = Sii.

c) A and B satisfy the braid relation ABA = BAB.

Proof: For (a) ⇔ (b), note that BA = S(AB)S−1, hence

(BA)ij = Sii (AB)ij S−1
jj

.

For (b) =⇒ (c), we already know AB is lower skew-triangular by (b) =⇒ (a).

Hence A(BA) is upper skew-triangular, and (AB)A is lower skew-triangular, that is

ABA is skew-diagonal. Also (ABA)ii = λi (BA)ii = Sii, thus ABA = S. Hence

BAB = S (ABA)S−1 = S = ABA.

(c) =⇒ (b) follows by setting S = ABA and noting that S and BA have the

desired properties by Lemma 2.10 and by the upper-triangularity of A.

2.4 The Matrices

We are now ready to prove that we can always choose a basis of V which makes

A and B ordered triangular.

Lemma 2.12. The set
{
ai | 1 ≤ i ≤

[
d+1
2

]}
∪
{
bi | 1 ≤ i ≤

[
d−1
2

]}
is a basis of V .

Proof: If d = 2, span {a1} 6= span {b1}, by Lemma 2.5. Hence

dim span {a1, b1} ≥ 2.
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If d = 3, then b1 6∈ span {a1, a2}, by Proposition 2.7. Hence

dim {a1, a2, b1} > dim {a1, a2} = 2.

If d = 4, let V1 = {a1, a2}, V2 = V1 + (ABA)V1, V3 = V1 ∩ (ABA)V1. If

V1 = V3, then V1 is invariant under 〈A, ABA〉. Hence dim V3 < dim V1 and dimV2 =

dimV1 + dim(ABA)V1 − dim V3 = 2 dimV1 − dim V3 > dimV1 = 2.

If dimV2 = 3, then dimV3 = 1 and V3 is spanned by some eigenvector w of

ABA. If a1 ∈ V3 then V3 = span {a1}, so V3 would be invariant under 〈A, ABA〉. Hence

V1 = span {a1, w} and (ABA)V1 = span {b1, w}.
Note that V3 ⊆ V1, so (AB)V3 ⊆ (AB)V1 = (ABA)V1. If (AB)V3 = V3, then

V3 would be 〈AB, ABA〉-invariant. Hence (ABA)V1 = V3 + (AB)V3.

Similarly, V3 ⊆ (ABA)V1, so (AB)2 V3 = A(BAB)V3 = A V3 ⊆ A V1 = V1. If

A V3 = (AB)2 V3 ⊆ V3, then V3 would be 〈A, ABA〉-invariant. Hence V1 = V3+(AB)2 V3.

So V2 = V1 + (ABA)V1 = V3 + (AB)V3 + (AB)2 V3 and is invariant under

〈ABA, AB〉.
If d = 5, we know span {a1, a2, b1, b2} is 4-dimensional, by the same argument

as in the previous case. Let V1 = span {a1, a2, a3}, V2 = V1 + (ABA)V1 and V3 =

V1 ∩ (ABA)V1. If a3 ∈ span {a1, a2, b1, b2}, then b3 = (ABA) a3 ∈ span {a1, a2, b1, b2}
too. Hence dim V2 = 4 and dimV3 = dimV1 + dim(ABA)V1 − dimV2 = 2.

Since V3 ( V1, there exists 1 ≤ i ≤ 3 such that ai 6∈ V3. Thus V1 = span {ai}+V3

and (ABA)V1 = span {bi} + V3.

Like before, V3 ⊆ V1, so (AB)V3 ⊆ (AB)V1 = (ABA)V1 and (AB)2 V3 =

A(ABA)V3 = A V3 ⊆ A V1 = V1. If (AB)V3 = V3 then V3 would be 〈AB, ABA〉-
invariant. Hence (ABA)V1 = V3 +(AB)V3. Analogously, if A V3 = (AB)2 V3 = V3, then

V3 would be 〈A, ABA〉-invariant. Therefore V1 = V3 + (AB)2 V3.

Again, V2 = V1+(ABA)V1 = V3+(AB)V3+(AB)2 V3 and is a proper subspace

invariant under 〈ABA, AB〉.

Proposition 2.13. If V is a simple B3-module of dimension d ≤ 5, then there is a basis

of V that makes A and B ordered triangular.

Proof: If d = 2, then {a1, b1} is a basis of V by Lemma 2.12 and it is clear that A and

B are ordered triangular with respect to this basis.



12

If d = 3, let v1 = a1 and v3 = b1. By Lemma 2.12, {a1, a2, b1} is a basis of

V . By Lemma 2.7, a1 6∈ span {b1, b2}, hence a2 = αa1 + β1b1 + β2b2 for some α, β1, β2.

Let v2 = a2 − αa1. Then span {a1, v2} = span {a1, a2}, so {a1, v2, b1} is still a basis of

V . But v2 ∈ span {a1, a2} ∩ span {b1, b2} by construction, so A v2 ∈ span {a1, a2} and

Bv2 ∈ span {b1, b2}, which shows that A and B are ordered triangular with respect to

{v1, v2, v3}.
If d = 4, let v1 = a1 and v4 = b1. We can construct v2 similarly as in the

previous case by noting that a1 6∈ span {b1, b2, b3} by Lemma 2.7, so there exists α such

that a2 − αa1 ∈ span {b1, b2, b3}. Let v3 = AB v2.

Note that span {a1, v2} = span {a1, a2} and by letting ABA act on both sides

we also have span {b1, v3} = span {b1, b2}. Hence V = span {v1, v2, v3, v4}. Since

v2 ∈ span {a1, a2} ∩ span {b1, b2, b3} we also have v3 = ABA v2 ∈ span {b1, b2} ∩
span {a1, a2, a3}. This shows that A and B are ordered triangular with respect to

{v1, v2, v3, v4}.
If d = 5, let v1 = a1 and v5 = b1. Now follow the method in the previous case to

construct v2 = a2 − αa1 ∈ span {a1, a2} ∩ span {b1, b2, b3, b4}. Let v4 = ABA v2 ∈ v2 ∈
span {b1, b2} ∩ span {a1, a2, a3, a4}. By Lemma 2.12, a3 = α1a1 + α2a2 + β1b1 + β2b2.

Let v3 = a3 − α1a1 − α2a2. Then v3 ∈ span {a1, a2, a3} ∩ span {b1, b2, b3}.
Note that span {v1, v2, v3} = span {a1, a2, a3} and span {v1, v2} = span {a1, a2}

by construction of v2 and v3. Acting on both sides of the second equality by ABA yields

span {v5, v4} = span {b1, b2}. Hence span {v1, . . . , v5} = span {a1, a2, a3, b1, b2} = V . So

{v1, . . . , v5} is a basis of V that makes A and B ordered triangular.

Actually, we can make A and B look even more special and the computation

simpler without losing generality.

Corollary 2.14. If V is a simple B3-module of dimension d ≤ 5, then there is a basis

of V that makes A and B ordered triangular and B = SAS−1 for S skew-diagonal and

Sii = 1.

Proof: Choose a basis {v1, . . . , vd} such that A and B are ordered triangular. As in the

proof of Lemma 2.11, we know that ABA is skew-diagonal and (ABA)2 = δ. If d is odd,

let γ = (ABA)[ d+1

2 ],[ d+1

2 ] and note that γ2 = δ, otherwise pick γ to be any square root
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of δ. Let S = γ−1ABA. Then S2 = I, so SiiSii = 1. For i = 1, . . . ,
[

d
2

]
, let vi 7→ Siivi.

Observe that for this new basis, Svi = vi.

From now on, let A, B, and S be as in Corollary 2.14.

Lemma 2.15. If BA is upper skew-triangular, A and B satisfy the braid relation.

Proof: Note S−1 = S, so B = SAS. Just like in the proof of Lemma 2.11, if BA =

(SAS)A is upper skew-triangular, AB = A(SAS) is lower skew-triangular and ABA =

A(SAS)A is skew-diagonal. So is BAB = S(ABA)S. Hence

(ABA)ii = Aii(SASA)ii = λi(SASA)ii

and

(BAB)ii = (SASA B)ii = (SASA)iiBii = (SASA)iiλi.

Hence ABA = BAB.

Lemma 2.16. Let V be a simple B3-module of dimension d ≤ 5 and {v1, . . . , vd} a

basis as in Corollary 2.14. Let D be a diagonal matrix such that Di,i = Dii for all i,

and A′ = DAD−1 and B′ = DBD−1. Then A′ and B′ are still ordered triangular and

B′ = SA′S−1.

Proof: Note that D corresponds only to a scaling of the basis vectors, so conjugating by

D does not change the triangular shapes and the diagonal entries of A and B. By direct

computation, DS = DS, hence

B′ = DBD−1 = DSAS−1D−1 = SDAD−1S−1 = SA′S−1.

Now we are ready to start computing the representations. By Lemma 2.11,

(BA)ij = 0 for i + j > d is a necessary condition for ABA = BAB and by Lemma 2.15

it is sufficient too.

Proposition 2.17. Let V be a simple 2-dimensional B3-module. Then there exists a

basis of V for which

A =




λ1 λ1

0 λ2



 B =




λ2 0

−λ2 λ1



 .
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Proof: We set 0 = (BA)22 = A2
12 + λ1λ2, hence A12 =

√
−λ1λ2.

Now rescale v1 7→ A12

λ1
v1 to obtain A and B in the above form.

Proposition 2.18. Let V be a simple 3-dimensional B3-module. Then there exists a

basis of V for which

A =







λ1 −λ1 − λ2
2

λ3
−λ2

0 λ2 λ3

0 0 λ3







B =







λ3 0 0

λ3 λ2 0

−λ2 −λ1 − λ2
2

λ3
λ1







.

Proof: Note that if A23 = 0, then B21 = 0 and span {v1, v3} would be invariant. So

A23 6= 0, and we can let

D =







1

λ3

A23

1







and we can replace A by DAD−1, and B by DBD−1 by Lemma 2.16.

Now

A =







λ1 A12 A13

λ2 λ3

λ3







B =







λ3

λ3 λ2

A13 A12 λ1







.

Hence

0 = (BA)23 = λ3A13 + λ2λ3

forces A13 = −λ2, and

0 = (BA)33 = A2
13 + A12 A23 + λ1λ3 = λ2

2 + λ3 A12 + λ1λ3

forces A12 = −λ1 − λ2
2λ

−1
3 .

Proposition 2.19. Let V be a simple 4-dimensional B3-module and D = −
√

λ1λ4/λ2λ3.

Then there exists a basis of V for which

A =










λ1 λ2(1 + D + D2) λ3(1 + D + D2) λ4

0 λ2 λ3(1 + D) λ4

0 0 λ3 λ4

0 0 0 λ4









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B =










λ4 0 0 0

−λ3 λ3 0 0

λ2D
−1 −λ2(1 + D−1) λ2 0

−λ1D
−3 λ1(D

−1 + D−2 + D−3) −λ1(1 + D−1 + D−2) λ1










.

Proof: If A24 = 0, then 0 = (BA)34 = A14A24 + A23A24 + λ2A34 forces A34 = 0. But

span {v1, v4} would then be invariant. By Lemma 2.16, we can conjugate A and B by

D =










1

λ4A
−1
24

λ4A
−1
24

1










to get

A =










λ1 A12 A13 A14

λ2 A23 λ4

λ3 A34

λ4










B =










λ4

A34 λ3

λ4 A23 λ2

A14 A13 A12 λ1










.

It follows from

0 = (BA)24 = A14A34 + λ3λ4

that A14 6= 0 and A34 = −λ3λ4A14
−1.

Now

0 = (BA)33 = λ4A13 + A23
2 + λ2λ3 =⇒ A13 = −A2

23 + λ2λ3

λ4

and

0 = (BA)34 = λ4

(

A14 + A23 −
λ2λ3

A14

)

=⇒ A23 = −A14 +
λ2λ3

A14
.

Also

0 = (BA)42 = A14A12 − λ2λ
−1
4 A2

14 + λ2
2λ3λ

−1
4 − λ3

2λ
2
3

λ4A2
14

= 0 =⇒

A12 = λ2λ
−1
4 A14 −

λ2
2λ3

λ4A14
+

λ3
2λ

2
3

λ4A3
14

.

And finally

0 = (BA)44 = λ1λ4 −
λ3

2λ
3
3

A4
14

=⇒ A14 =
4

√

λ3
2λ

3
3

λ1λ4
.
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Now rescale vi 7→ Ai4/λ4vi and substitute D = −
√

λ1λ4/λ2λ3 to obtain A and

B in the desired form.

The computation proceeds similarly for d = 5, only the matrix entries turn out

to be more complicated. Therefore we will omit listing the actual matrices.

Proposition 2.20. Let V be a simple 5-dimensional B3-module and D = 5
√

detA. Then

for each choice of D, there exists a basis of V for which A and B are in ordered triangular

form and the B3 action is unique up to conjugation.

Proof: Note that A15 6= 0, otherwise (BA)15 = λ5A15 = 0, which would eventually make

(ABA)15 = 0 and ABA singular.

If A35 = 0, then

0 = (BA)35 = A35A15 + A34A25 + λ3A35

implies either A34 = 0 or A25 = 0. If A34 = 0, then B31 = B32 = 0 too, so

span {v1, v2, v4, v5} would be B3-invariant. Hence A25 = 0 and

0 = (BA)25 = A45A15 + λ4A25

and A45 = 0 as A15 6= 0. If A45 = 0, then B21 = B31 = B41 = 0, so span {v1, v5} would

be B3-invariant. Hence A35 6= 0.

If A45 = 0, then (BA)25 = 0 would make A25 = 0 too and

0 = (BA)45 = A25A15 + A24A25 + A23A35 + λ2A45

would imply A23 = 0. Hence B21 = B41 = B43 = 0, and span {v1, v3, v5} would be

B3-invariant. So A45 6= 0.

Hence we can rescale

v4 7→ −A45

λ4
v4

v3 7→ A35

A15
v3

With respect to this new basis, A45 = −λ4 and A35 = A15.

From (BA)25 = 0, A25 = −A15 and now

0 = (BA)35 = A15(A15 − A34 + λ3)
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implies A34 = A15 + λ3.

Setting

0 = (BA)52 = A15A12 + λ2A14

shows that if A12 = 0 then A14 = 0 and

0 = (BA)53 = A13(A15 + λ3).

If A13 = 0, then B52 = B53 = B54 = 0 and hence span {v2, v3, v4} is B3-invariant. If

A15 = −λ3, then A34 = 0 and in turn B32 = B54 = B52 = 0 making span {v2, v4} a

proper B3-invariant subspace. Hence we can assume A12 6= 0 and

A14 = −A15A12

λ2
.

Now

0 = (BA)34 = −A2
15A12

λ2
+ A24A15 + λ3A24 + λ3A15 + λ2

3

forces

A12 =
λ2

A2
15

(A24 + λ3)(A15 + λ3)

and

(BA)53 =
(A15 + λ3)(A15A13 + A24A23 + A23λ3)

A15
.

If A15 = −λ3, then A12 = 0 by (BA)34 = 0, which we have ruled out already. Therefore

A13 =
(A24 + λ3)A23

A15
.

Letting

0 = (BA)45 = −A2
15 − A24A15 + A23A15 + λ4λ2

implies

A23 = A15 + A24 −
λ2λ4

A15
.

To solve for A24, set

0 = (BA)55 − (BA)44 =
λ2λ3λ4A24 + λ2λ

2
3λ4 + λ1λ5A

2
15 + λ2λ3λ4A15

A2
15

to obtain

A24 = −A15 − λ3 −
λ1λ5A

2
15

λ2λ3λ4
.
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Finally substitute this back in

0 = (BA)44 =
λ2

1λ
2
5A

5
15 − λ3

2λ
3
3λ

3
4

λ2
2λ

2
3λ

2
4A15

to get

A15 =
5
√

λ3
1λ

3
2λ

3
3λ

3
4λ

3
5

λ1λ5
.

2.5 Characterization of All Simple Representations

Now that we know that simple representations of dimension d ≤ 5 of B3 are

of the form described in the last four theorems, the natural question to ask is whether

all representations of this form are simple. We will find that the answer is no, but

we can give an explicit necessary and sufficient condition for simplicity in terms of the

eigenvalues.

Let P
(d)
n (x) =

∏

i6=n(x − λi) for 1 ≤ n ≤ d. Note that (x − λn)P
(d)
n (x) is the

characteristic polynomial of A and B. Hence (A − λn)P
(d)
n (A) = 0 so the columns of

P
(d)
n (A) are 0 or eigenvectors of A. By Proposition 2.9, P

(d)
n (A) 6= 0 so at least one of

the columns is nonzero and the others are multiples of this column. So P
(d)
n (A) is of

rank 1. Analogous statements hold for P
(d)
n (B). Hence

P (d)
n (A)P (d)

m (B)P (d)
n (A) = Q(d)

mn P (d)
n (A)

for some constant Q
(d)
mn. A and B can be switched in the last equation by conjugating

by ABA. The entries of A and B are rational functions in λ1, . . . , λd, δ, therefore the

Q
(d)
mn are also rational functions of the same variables.

Denote by E
(d)
ij the elementary d× d matrix whose only nonzero entry is a 1 in

the (i, j) position.

Lemma 2.21.

a) P
(d)
1 (B)P

(d)
d (A) = Q

(d)
1d E

(d)
dd .

b) P
(d)
m (B)P

(d)
n (A) = 0 if and only if Q

(d)
mn = 0.
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c) The polynomials are

Q(2)
mn = −λ2

m + λmλn − λ2
n

Q(3)
mn = (λ2

m + λnλk)(λ
2
n + λmλk)

with k 6= m, n.

Q(4)
mn = −γ−1(λ2

m + γ)(λ2
n + γ)(γ + λmλk + λnλl)(γ + λmλl + λnλk)

with γ2 = λ1 · · ·λ4 and k, l 6= m, n.

Q(5)
mn = γ−8(γ2 + λmγ + λ2

m)(γ2 + λnγ + λ2
n)

∏

k 6=m,n

(γ2 + λmλk)(γ
2 + λnλk)

with γ5 = λ1 · · ·λ5.

Proof:

a) Observe that (B − λi) vj ∈ span {vi+1, . . . , vd} for all j ≥ i. Hence P
(d)
1 (B)V ⊆

span {vd}, that is the only nonzero entries of P
(d)
1 (B) are in the bottom row.

Also, (A−λi) vj ∈ span {v1, . . . , vi−1} for all j ≤ i. Hence P
(d)
d (A) vj = 0 for j < d,

and P
(d)
d (A)vd ∈ span {v1}, that is the only nonzero entry of P

(d)
d (A) is in the top

right corner. So P
(d)
d (A) = α E

(d)
1d and P

(d)
1 (B)P

(d)
d (A) = β E

(d)
dd for some α, β ∈ F .

So

P
(d)
d (A)P

(d)
1 (B)P

(d)
d (A) = αβ E

(d)
1d

Q
(d)
1d P

(d)
d (A) = Q

(d)
1d β E

(d)
1d

and hence α = Q
(d)
1d .

b) This follows from a) by reindexing the eigenvalues.

c) Using a), Q
(d)
1d can be easily found by direct computation. Then just reindex the

eigenvalues so that 1 and d are replaced by m and n for the general case.

Theorem 2.22. Let F be an algebraically closed field.
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a) There exists a simple representation of B3 on a vector space V of F -dimension

d ≤ 5 if and only if the eigenvalues and (for d = 4, 5) γ, as defined in Lemma

2.21, satisfy Q
(d)
mn 6= 0 for 1 ≤ m, n ≤ d.

b) Any simple B3-module over F is uniquely determined by the eigenvalues and (for

d = 4, 5) by a choice of the root γ.

Proof:

a) Assume V is a simple B3-module. Then, as we have already observed, P
(d)
n (A) is

nonzero for all 1 ≤ n ≤ d. Suppose Q
(d)
mn = 0 for some m, n. Then P

(d)
m (B)P

(d)
n (A) =

0 by Lemma 2.21. Since P
(d)
n (A) 6= 0, there exists a vector v ∈ V such that

an = P
(d)
n (A) v 6= 0, hence an is an eigenvector of A with eigenvalue λn. Let

bn = ABA an, which is then an eigenvector of B with the same eigenvalue. Since

P
(d)
m (B) an = P

(d)
m (B)P

(d)
n (A) v = 0, W = span

{
an, B an, . . . , Bd−2 an, bn

}
is B-

invariant. Observe that

P (d)
m (B)Bi an = Bi P

(d)
m (B) an = 0

and

P (d)
m (B) bn =

∏

i6=m, n

(B − λi) (B − λn)bn = 0.

Thus P
(d)
m (B) restricted to W is 0, which shows W is a proper subspace of V . This

contradicts Proposition 2.7.

Conversely, let Q
(d)
mn 6= 0 for all m 6= n. Let W ⊆ V be a nonzero B3-submodule.

Then A has an eigenvector ai in W . We know by Lemma 2.21 that P
(d)
n (A) 6= 0 for

1 ≤ n ≤ d, so the minimal polynomial of A is the characteristic polynomial, hence

the Jordan form of A contains only full blocks, so its eigenspaces are 1-dimensional.

Since P
(d)
i (A) 6= 0, there exists v ∈ V such that P

(d)
i (A) v 6= 0. So P

(d)
i (A) v is an

eigenvector of A with eigenvalue λi, just like ai. Hence ai ∈ span
{

P
(d)
i (A) v

}

and

we can always scale v so that ai = P
(d)
i (A) v.

We will now show that v1, vd ∈ W . If i = 1, then

vd = ABA v1 ∈ (ABA)W = W.
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If not, let b1 = P
(d)
1 (B)P

(d)
i (A) v. Now

P
(d)
i (A) b1 = P

(d)
i (A)P

(d)
1 (B)P

(d)
i (A) v = Q

(d)
1i P

(d)
i (A) v 6= 0

so b1 6= 0 and b1 is an eigenvector of B with eigenvalue λ1. So is vd, thus vd ∈
span {b1} ⊆ W and we may scale vd so that vd = b1. Also, v1 = (ABA)−1 vd ∈ W .

Let w1 = v1, wd = vd and wi =
∏d

j=i+1(A − λj) vd for 2 ≤ i < d. Obviously,

wi ∈ W . Note that

P
(d)
1 (B) (A − λ1)(A − λ3) · · · (A − λi)wi = P

(d)
1 (B)P

(d)
2 (A) vd =

P
(d)
1 (B)P

(d)
2 (A)vd P

(d)
1 (B) ai = Q

(d)
12 P

(d)
1 (B) ai 6= 0

so wi 6= 0 for all i. We will prove that they are linearly independent. Let
∑

αiwi =

0 with at least one nonzero coefficient. Let k be maximal with respect to αk 6= 0.

If k = 1, then α1v1 = 0 implies α1 = 0, a contradiction. So k ≥ 2, and

k−1∏

j=1

(A − λj)
d∑

i=1

αiwi = αkP
(d)
k (A) vd = 0.

But P
(d)
k (A) vd = P

(d)
k (A)P

(d)
1 (B) ai 6= 0 by the usual argument, so αk = 0, which

is a contradiction.

So span {w1, . . . , wd} is a d-dimensional subspace of W . Hence W = V .

b) This follows from our earlier computations.



Chapter 3

Unitary Representations

3.1 Introduction

Unitary braid representations have been constructed in several ways using the

representation theory of Kac-Moody algebras and quantum groups, see e.g. [6], [9], and

[16], and specializations of the reduced Burau and Gassner representations in [1]. Such

representations easily lead to representations of PSL(2, Z) = B3/Z, where Z is the

center of B3, and PSL(2, Z) = SL(2, Z)/{±1}, where {±1} is the center of SL(2, Z).

We give a complete classification of simple unitary representations of B3 of dimension

d ≤ 5 in this paper. In particular, the unitarizability of a braid representation depends

only on the the eigenvalues λ1, λ2, . . . , λd of the images the two generating twists of

B3. The condition for unitarizability is a set of linear inequalities in the logarithms

of these eigenvalues. In other words, the representation is unitarizable if and only if

the (arg λ1, arg λ2, . . . , arg λd) is a point inside a polyhedron in (R/2π)d, where we give

the equations of the hyperplanes that bound this polyhedron. This classification shows

that the approaches mentioned previously do not produce all possible unitary braid

representations. We obtain representations that seem to be new for d ≥ 3. As any

unitary representation of Bn restricts to a unitary representation of B3 in an obvious

way, these results may also be useful in classifying such representation of Bn.

Since we are interested in unitarizable representations, we will let F = C and

we will require that |λi| = 1. Let ρ : B3 → V be a simple d-dimensional representation

(d ≤ 5), and A = ρ(σ1), B = ρ(σ2). Any unitarizable complex matrix is diagonalizable,

22
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so we can assume that A and B are diagonalizable. So the eigenvalues λ1, λ2, . . . , λd

are distinct by Proposition 2.8. Denote the C-algebra generated by A and B by B. In

other words, B = ρ(C B3), where C B3 is the group algebra. Note that B = End(V ) by

simplicity.

The proof proceeds by defining a vector space antihomomorphism ı : B → B
and proving that it is an algebra antihomomorphism and an involution of B in section 3.2.

In section 3.3, we define a sesquilinear form 〈. , .〉 on the ideal I = BeB,1 that is invariant

under multiplication by A and B. We prove that 〈. , .〉 is positive definite if µ
(d)
i1 > 0 for

2 ≤ i ≤ d. In this case, ρ is a unitary representation of B3 on the d-dimensional vector

space I. We also prove that if ρ is a unitarizable representation µ
(d)
i1 > 0 for 2 ≤ i ≤ d.

In section 3.4, we give some examples of using the positivity of µ
(d)
i1 .

3.2 An Involution of the Image of B3

Let eM,i be the eigenprojection of M to the eigenspace of λi, where M ∈ {A, B}.
That is

eM,i =
∏

j 6=i

M − λj

λi − λj
=

P
(d)
i (M)

P
(d)
i (λi)

.

Note that eA,i and eB,i always exist because the eigenvalues are distinct. Also eM,ieM,j =

δijeM,i. Define µ
(d)
ji by eB,ieA,jeB,i = µ

(d)
ji eB,i. Note that

µ
(d)
ji =

Q
(d)
ji

P
(d)
i (λi)P

(d)
j (λj)

.

Lemma 3.1. The µ
(d)
ij are real numbers.

Proof: For i 6= j, the proof is by direct computation using λi = λ−1
i and γ = γ−1. For

example, for d = 5:

µ
(d)
ij =

(γ2 + λiγ + λ2
i )(γ

2 + λjγ + λ2
j )
∏

k 6=i,j(γ
2 + λiλk)(γ

2 + λjλk)

γ8
∏

k 6=i(λi − λk)
∏

k 6=j(λj − λk)

=
(γλ−1

i + 1 + γ−1λi)(γλ−1
j + 1 + γ−1λj)

(1 − λjλ
−1
i )(1 − λiλ

−1
j )

∏

k 6=i,j(γ
2 + λiλk)(γ

2 + λjλk)

γ6
∏

k 6=i,j(λi − λk)(λj − λk)
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The first of the two quotients is easily seen to be real. For the second quotient,

(∏

k 6=i,j(γ
2 + λiλk)(γ2 + λjλk)

γ6
∏

k 6=i,j(λi − λk)(λj − λk)

)

=

∏

k 6=i,j(γ
−2 + λ−1

i λ−1
k )(γ−2 + λ−1

j λ−1
k )

γ−6
∏

k 6=i,j(λ
−1
i − λ−1

k )(λ−1
j − λ−1

k )

Multiply the numerator and the denominator by γ12λ3
i λ

3
j

∏

k 6=i,j λ2
k to see that this is

still ∏

k 6=i,j(γ
2 + λiλk)(γ

2 + λjλk)

γ6
∏

k 6=i,j(λi − λk)(λj − λk)

For the case i = j, note that
∑d

k=1 eA,k = I, so

eB,i = eB,iIeB,i

= eB,i

d∑

k=1

eA,keB,i

=

d∑

k=1

eB,ieA,keB,i

=

d∑

k=1

µ
(d)
ki eB,i

Hence
∑d

k=1 µ
(d)
ki = 1, and µ

(d)
ii = 1 −∑k 6=i µ

(d)
ki is real.

Proposition 3.2. S = {eA,ieB,1eA,j | 1 ≤ i, j ≤ d, i 6= j} ∪ {eA,i | 1 ≤ i ≤ d} is a basis

for the C-vector space B.

Proof: Suppose
d∑

i=1

d∑

j=1

j 6=i

αijeA,ieB,1eA,j +

d∑

i=1

αiieA,i = 0

Multiply by eA,i both on the left and on the right. The only term of the sum that

survives is

αiieA,i = 0

Let vi be an eigenvector of A corresponding to λi. Then eA,ivi = vi 6= 0, so eA,i 6= 0.

Hence αii = 0.

For i 6= j, multiplying by eA,i on the left and by eA,j on the right shows

αijeA,ieB,1eA,j = 0
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But

eB,1eA,ieB,1eA,jeB,1 = (eB,1eA,ieB,1)(eB,1eA,jeB,1) = µ
(d)
j1 µ

(d)
i1 eB,1 6= 0

so eA,ieB,1eA,j 6= 0. Hence αij = 0. So S is linearly independent. It has d2 elements,

hence it is a basis of the d2-dimensional space B.

Note: if we know µ
(d)
ii 6= 0 for all i, we can use the basis S′ = {eA,ieB,1eA,j |

1 ≤ i, j ≤ d} instead of S. As eA,ieB,1eA,i = µ
(d)
ii eA,i, S′ is almost the same as S. Since

S′ is more symmetric than S, its use makes the following computations simpler and the

arguments more transparent. In the most general case however, µ
(d)
ii could be 0.

Define ı : C → C as the usual complex conjugation. Extend ı to B → B by

requiring ı to be an antilinear map with ı(eA,i) = eA,i and ı(eA,ieB,1eA,j) = eA,jeB,1eA,i

for i 6= j. Note that ı(µ
(d)
ij ) = µ

(d)
ij .

Lemma 3.3. ı as defined above is an antihomomorphism on the algebra B and ı2 = IdB.

Proof: It is sufficient to prove that ı acts as an antihomomorphism on the elements of

the basis S. S has two different types of elements, therefore we will have four different

cases. Since each can verified directly by a simple computation, we will show the details

for only one:

1.

ı(eA,ieA,j) = ı(eA,j)ı(eA,i)

2.

ı(eA,i(eA,jeB,1eA,k)) = ı(eA,jeB,1eA,k)ı(eA,i)

ı((eA,ieB,1eA,j)eA,k) = ı(eA,k)ı(eA,jeB,1eA,k)

3. For i 6= k,

ı((eA,ieB,1eA,j)(eA,keB,1eA,l)) = (eA,leB,1eA,k)(eA,jeB,1eA,i)
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4.

ı((eA,ieB,1eA,j)(eA,jeB,1eA,k)) = ı(eA,i(eB,1eA,jeB,1)eA,k)

= ı(eA,i(µ
(d)
j1 eB,1)eA,k)

= µ
(d)
j1 ı(eA,ieB,1eA,k)

= µ
(d)
j1 eA,keB,1eA,i

Also

ı(eA,jeB,1eA,k)ı(eA,ieB,1eA,j) = (eA,keB,1eA,j)(eA,jeB,1eA,i)

= eA,k(eB,1eA,jeB,1)eA,i

= µ
(d)
j1 eA,keB,1eA,i

That ı2 = IdB follows immediately from the definition.

Lemma 3.4. ı(eB,1) = eB,1.

Proof: First note that ı(eA,ieB,1eA,i) = ı(µ
(d)
ii eA,i) = µ

(d)
ii eA,i = eA,ieB,1eA,i. Multiply

eB,1 by 1 =
∑d

i=1 eA,i on both sides:

eB,1 =

(
d∑

i=1

eA,i

)

eB,1





d∑

j=1

eA,j



 =
∑

i,j

eA,ieB,1eA,j

into

ı(eB,1) = ı





d∑

i=1

d∑

j=1

eA,ieB,1eA,j



 =
d∑

i=1

d∑

j=1

ı(eA,ieB,1eA,j)

=
d∑

i=1

d∑

j=1

(eA,jeB,1eA,i) = eB,1

Corollary 3.5. ı(A) = A−1, and ı(I) = I.

Proof:

ı(A) = ı(
d∑

i=1

λieA,i) =
d∑

i=1

λiı(eA,i) =
d∑

i=1

λ−1
i eA,i = A−1
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Similarly,

ı(I) = ı(
d∑

i=1

eA,i) =
d∑

i=1

ı(eA,i) =
d∑

i=1

eA,i = I

Lemma 3.6. ı(B) = B−1.

Proof: Note that A−1ı(B)A−1 = ı(A)ı(B)ı(A) = ı(ABA) = ı(BAB) = ı(B)A−1ı(B).

That is A−1 and ı(B) satisfy the braid relation. So the group homomorphism ρ′ : B3 →
GL(V ) defined by ρ′(σ1) = A−1 and ρ′(σ2) = ı(B) is another representation of B3 on V .

Once again, the braid relation implies that A−1 and ı(B) are conjugates. Hence they

have the same eigenvalues, namely λ−1
1 , λ−1

2 , . . . , λ−1
d .

But ı : B → B only permutes the basis S of B = End(V ). Hence ı(B) =

ı(End(V )) = End(V ) and A−1 and ı(B) generate the algebra End(V ). That is ρ′ is also

a simple representation of B3

Now, (A−1ı(B))3 = ı(BA)3 = ı(AB)3 = ı(δI) = δ = δ−1I (recall |δ| = 1).

By Corollary 2.22, the eigenvalues λ−1
1 , λ−1

2 , . . . , λ−1
d (if d=2, 3) or the eigenvalues to-

gether with δ (if d = 4, 5) uniquely determine a simple representation of B3 on V up to

isomorphism.

But we already know such a representation, namely σ1 7→ A−1 and σ2 7→ B−1.

Hence there exists M ∈ GL(V ) such that A−1 = MA−1M−1 and ı(B) = MB−1M−1.

Then M is in the centralizer of A.

MeB,1M
−1 = M

(
d∏

i=2

B − λi

λ1 − λi

)

M−1

=
d∏

i=2

MBM−1 − λi

λ1 − λi

=
d∏

i=2

ı(B−1) − λi

λ1 − λi

=
d∏

i=2

ı

(
B−1 − λ−1

i

λ−1
1 − λ−1

i

)

= ı

(
d∏

i=2

B−1 − λ−1
i

λ−1
1 − λ−1

i

)
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Call the quantity in parentheses φ. Note that φ is the eigenprojection to the sub-

space spanned by the eigenvector w1 of B−1 with eigenvalue λ−1
1 . But the eigenvectors

w1, w2, . . . , wd of B−1 are also eigenvectors of B and span V (the eigenvalues are dis-

tinct). Hence φ(w1) = w1 = eB,1w1 and φ(wi) = 0 = eB,1wi for i ≥ 2. That is

φ = eB,1 as their action on the basis {w1, w2, . . . , wd} is identical. Then Lemma 3.4

shows ı(MeB,1M
−1) = ı(φ) = ı(eB,1) = eB,1.

Hence conjugation by M is a B-algebra isomorphism that fixes A and eB,1. But

A and eB,1 generate the basis S of B, hence they generate the algebra B. So conjugation

by M must fix every element of B. In particular, ı(B) = MB−1M−1 = B−1.

3.3 An Invariant Inner Product

Let B act on the left algebra ideal BeB,1. Note that BeB,1 is a d-dimensional

C-vector space, as eB,1 is an idempotent of rank 1.

Definition 3.7. Define the form 〈. , .〉 on BeB,1 by 〈aeB,1, beB,1〉 eB,1 = ı(beB,1)aeB,1 =

eB,1ı(b)aeB,1 for aeB,1, beB,1 ∈ BeB,1.

It is easy to verify that 〈. , .〉 is a sesquilinear form on the C-vector space BeB,1.

Since ı(A) = A−1 and ı(B) = B−1, this form is clearly invariant under the action by A

and B, hence ρ(B3).

Lemma 3.8. T = {eA,ieB,1 | 2 ≤ i ≤ d}∪{ABA eB,1} is a basis for the left algebra ideal

BeB,1 considered as a C-vector space.

Proof: Suppose

α1ABA eB,1 +

d∑

i=2

αieA,ieB,1 = 0

Note that (eA,iABA eB,1)(ABA)−1 = eA,ieA,1 = δ1i eA,1. Since (ABA)−1 is

invertible eA,iABA eB,1 = 0 if and only if i ≥ 2.

Multiply by eA,1 on the left. Then α1eA,1ABA eB,1 = 0 But eA,1ABA eB,1 6= 0,

so α1 = 0.

Now, multiply by eA,i (i ≥ 2) on the left. Then αieA,ieB,1 = 0. We know

eB,1eA,ieB,1 = µ
(d)
i1 eB,1 6= 0 by simplicity, so eA,ieB,1 6= 0 and αi = 0.
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Hence T is a linearly independent set, and we can conclude that it is a basis of

the d-dimensional vector space BeB,1.

Note: if we know eA,1eB,1 6= 0, we can use the more symmetric basis T ′ =

{eA,ieB,1 | 1 ≤ i ≤ d} to simplify this and some of the following computations. Unfor-

tunately, eA,1eB,1 could in general be 0. In particular, if µ
(d)
11 = 0, then eA,1eB,1 = 0

too.

Theorem 3.9. The braid representation B is unitarizable if and only if µ
(d)
i1 > 0 for all

2 ≤ i ≤ d.

Proof: Suppose µ
(d)
i1 > 0 for all 2 ≤ i ≤ d. Consider the action of B on BeB,1. The

sesquilinear form defined above is invariant under the action of ρ(B3). So it is sufficient

to show that it is an inner product. That is we need to prove that it is positive definite.

On the basis T :

〈eA,ieB,1, eA,ieB,1〉 eB,1 = eB,1ı(eA,i)eA,ieB,1 = eB,1eA,ieA,ieB,1

= eB,1eA,ieB,1 = µ
(d)
i1 eB,1

〈ABA eB,1, ABA eB,1〉 eB,1 = 〈eB,1, eB,1〉 eB,1 = eB,1eB,1 = eB,1

Hence 〈eA,ieB,1, eA,ieB,1〉 = µ
(d)
i1 for i ≥ 2, which is positive by our condition, and

〈ABA eB,1, ABA eB,1〉 = 1. We claim that T is orthogonal with respect to 〈., , 〉. Let

i, j 6= 1 and i 6= j:

〈eA,ieB,1, eA,jeB,1〉 eB,1 = eB,1ı(eA,i)eA,jeB,1 = eB,1eA,ieA,jeB,1 = 0

〈ABA eB,1, eA,ieB,1〉 eB,1 = eB,1ı(eA,i)ABA eB,1 = eB,1eA,iABA eB,1 = 0

We used eA,iABA eB,1 = 0 in the last computation just like in Lemma 3.8.

Hence 〈., .〉 is a positive definite form. Then BeB,1 is a C-vector space with

inner product 〈. , .〉 and the action of ρ(B3) on this space is unitary.

Conversely, suppose B is unitarizable. So there exists V a C vector space with

inner product 〈. , .〉 and ρ : B3 → GL(V ) such that A = ρ(σ1) and B = ρ(σ2) act as

unitary operators on V . Let ∗ be the transpose induced by 〈. , .〉. We know A∗ = A−1

and B∗ = B−1. Let v ∈ V be an eigenvector of B with eigenvalue λ1. Then eB,1v = v
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and

0 ≤ 〈eA,ieB,1v, eA,ieB,1v〉 =
〈
v, e∗B,1e

∗
A,ieA,ieB,1v

〉

= 〈v, eB,1eA,ieB,1v〉 =
〈

v, µ
(d)
i1 eB,1v

〉

= µ
(d)
i1 〈v, v〉

Hence µ
(d)
i1 ≥ 0. We know µ

(d)
i1 6= 0 for i ≥ 2 by simplicity, so µ

(d)
i1 > 0 in this case.

3.4 Examples

Example 3.10. d = 2

µ
(2)
21 =

−λ2
1 + λ1λ2 − λ2

2

(λ1 − λ2)(λ2 − λ1)

=
λ2

1 − λ1λ2 + λ2
2

(λ1 − λ2)2

= 1 +
λ1λ2

(λ1 − λ2)2

= 1 − 1

(λ1/λ2 − 1)(λ2/λ1 − 1)

= 1 −
∣
∣
∣
∣

λ1

λ2
− 1

∣
∣
∣
∣

−2

> 0

That is ∣
∣
∣
∣

λ1

λ2
− 1

∣
∣
∣
∣
> 1

or λ1/λ2 = eit for π/3 < t < 5π/3.

Example 3.11. d = 3

µ
(3)
21 =

(λ2
1 + λ2λ3)(λ

2
2 + λ1λ3)

(λ1 − λ2)(λ1 − λ3)(λ2 − λ1)(λ2 − λ3)

=

(

1 + λ3

λ1

λ2

λ1

)(
λ2

λ1
+ λ3

λ2

)

(

1 − λ2

λ1

)(

1 − λ1

λ2

)(

1 − λ3

λ1

)(
λ2

λ1
− λ3

λ1

)

µ
(3)
31 =

(λ2
1 + λ2λ3)(λ

2
3 + λ1λ2)

(λ1 − λ2)(λ1 − λ3)(λ3 − λ1)(λ3 − λ2)

=

(

1 + λ2

λ1

λ3

λ1

)(
λ3

λ1
+ λ2

λ3

)

(

1 − λ3

λ1

)(

1 − λ1

λ3

)(

1 − λ2

λ1

)(
λ3

λ1
− λ2

λ1

)
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Let ω2 = λ2/λ1 and ω3 = λ3/λ1. Then

µ
(3)
21 =

(1 + ω3ω2)
(
ω2 + ω3ω

−1
2

)

|1 − ω2|2 (1 − ω3) (ω2 − ω3)

µ
(3)
31 =

(1 + ω2ω3)
(
ω3 + ω2ω

−1
3

)

|1 − ω3|2 (1 − ω2) (ω3 − ω2)

Let e2πt2 = ω2 and e2πt3 = ω3. So we are looking for (t2, t3) ∈ [0, 1)2 such that

both µ
(3)
21 > 0 and µ

(3)
31 > 0. µ

(3)
21 and µ

(3)
31 can change signs at

ω2ω3 = −1

ω3ω
−1
2 = −ω2

ω2ω
−1
3 = −ω3

w2 = 1

w3 = 1

w2 = w3

These equations can be transformed into linear equations in t2 and t3 by taking logs:

t2 + t3 =
1

2

t3 = 2t2 +
1

2

t2 = 2t3 +
1

2

t2 = 0

t3 = 0

t2 = t3

Of course, the above equations are all understood mod 1.

Computation by Maple shows that µ
(3)
21 > 0 and µ

(3)
31 > 0 in the open set colored

black on the plot below. The grey regions are those where one of µ
(3)
21 and µ

(3)
31 is positive

and the other is negative. The line t2 = t3 corresponds to λ2 = λ3, in which case the

representation cannot be unitarizable.
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Figure 3.1: Region of unitarizability for d = 3



Chapter 4

Tensor Categories

4.1 Definitions

Definition 4.1. A monoidal category C̃ is a category C with a tensor product ⊗ : C̃×C̃ →
C̃ on the objects and morphisms of C̃, a natural transformation a between ⊗ ◦ (⊗× IdC̃)

and ⊗ ◦ (IdC̃ ×⊗), and a unit object 11 ∈ C̃ such that

1.

((X ⊗ Y ) ⊗ V ) ⊗ W

aX⊗Y,V,W

��

aX,Y,V ⊗IdW
// (X ⊗ (Y ⊗ V )) ⊗ W

aX,Y ⊗V,W

��

(X ⊗ Y ) ⊗ (V ⊗ W )

aX,Y,V ⊗W

��

X ⊗ (Y ⊗ (V ⊗ W )) X ⊗ ((Y ⊗ V ) ⊗ W )
IdX ⊗aY,V,W

oo

is commutative.

2. X ⊗ 11 ∼= 11 ⊗ X ∼= X for all X ∈ C̃.

Definition 4.2. A monoidal category is called strict if a is the identity and 11 ⊗ X =

X ⊗ 11 = X for any X ∈ C̃.

Definition 4.3. A strict monoidal category is called rigid if every object X ∈ C̃ has a

dual object X∗ ∈ C̃ and a pair of morphisms iX : 11 → X ⊗ X∗ and eX : X∗ ⊗ X → 11

such that the maps

X = 11 ⊗ X
iX⊗IdX // X ⊗ X∗ ⊗ X

IdX ⊗eX // X ⊗ 11 = X

33
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X∗ = X∗ ⊗ 11
IdX ⊗iX // X∗ ⊗ X ⊗ X∗

eX⊗IdX // 11 ⊗ X∗ = X∗

are IdX and IdX∗ .

Definition 4.4. A tensor category is a monoidal category equipped with a direct sum

⊕ : C̃ × C̃ → C̃ and an operation of projection onto subobjects.

Definition 4.5. The Grothendieck semiring R of the tensor category C̃ is the set of

equivalence classes of objects of C̃ with ⊕ and ⊗ as addition and multiplication.

We call an object X in the category simple if End(X) is a field. We will always

assume that 11 is simple. A tensor category is semisimple if each object is semisimple,

that is it is a direct sum of simple objects.

Definition 4.6. A monoidal category C̃ is called braided if there exists a family c of

natural isomorphisms cV,W : V ⊗ W → W ⊗ V such that:

X ⊗ Y ⊗ Z cX,Y ⊗Z

//

cX,Y ⊗IdZ ((PPPPPPPPPPPP
X ⊗ Z ⊗ Y

Y ⊗ X ⊗ Z

IdY ⊗cX,Z

66nnnnnnnnnnnn

and

X ⊗ Y ⊗ Z cX⊗Y,Z

//

IdU ⊗cY,Z ((PPPPPPPPPPPP
Y ⊗ Z ⊗ X

X ⊗ Z ⊗ Y

cX,Z⊗IdY

66nnnnnnnnnnnn

commute. Naturality means that for any morphisms f : X → X ′ and g : Y → Y ′

(f ⊗ g) ◦ cX,Y = cX′,Y ′ ◦ (f ⊗ g).

This is a generalization of the flip, which is the natural isomorphism between

PA,B : A ⊗ B → B ⊗ A, where A and B are modules over the commutative ring R.

Note that the flip is involutive, that is PB,A ◦ PA,B = IdA⊗B. This is not required for a

braiding, but the property is generalized in the notion of a twist:

Definition 4.7. A twist in a braided monoidal category C̃ is family θ of isomorphisms

θV : V → V such that

θX⊗Y = cY,X ◦ cX,Y ◦ (θX ⊗ θY )
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for all X, Y ∈ C̃. θ is required to be natural in the sense that for any morphism

f : X → Y , θY ◦ f = f ◦ θX .

Definition 4.8. A ribbon category C̃ is a rigid braided monoidal category with a com-

patible twist, meaning:

(θX ⊗ IdX∗) ◦ iX = (IdX ⊗θX∗) ◦ iX .

In a ribbon category, we can define the trace of an endomorphism and the

dimension of an object as follows.

Definition 4.9. Let C̃ be a ribbon category, X ∈ C̃, and f ∈ End(X). Then the trace

of f is defined as

tr(f) = eX ◦ cX,X∗ ◦ ((θX ◦ f) ⊗ IdX∗) ◦ iX ∈ End(11)

and the categorical dimension of X as

dimX = tr(IdX).

It can be shown (see [13]) that tr(fg) = tr(gf) for any f ∈ Hom(X, Y ) and

g ∈ Hom(Y, X). Also tr(f ⊗ g) = tr(f) tr(g) for any f ∈ End(X) and g ∈ End(Y ). If

f ∈ End(11), then tr(f) = f .

4.2 An Application of Braid Representations

Let C̃ be a semisimple ribbon tensor category with End(11) = F an algebraically

closed field. Then Hom(X, Y ) is an F -vector space for all X, Y ∈ C̃ and End(X) is a

semisimple F -algebra.

Assume that C̃ contains a self dual object Z, that is 11 appears exactly once in

the direct sum decomposition of Z ⊗Z. Let p ∈ End(Z ⊗Z) be the projection to 11 and

p(1) = p ⊗ IdZ and p(2) = IdZ ⊗p in End(Z⊗3).

Lemma 4.10.

p(2) p(1) p(2) 6= 0.
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Proof: Let q = iZ eZ ∈ End(Z⊗2), q(1) = q ⊗ IdZ , and q(2) = IdZ ⊗q. Then

q(2) q(1) q(2) = (IdZ ⊗iZ) (IdZ ⊗eZ)(iZ ⊗ IdZ)
︸ ︷︷ ︸

IdZ

(eZ ⊗ IdZ)(IdZ ⊗iZ)
︸ ︷︷ ︸

IdZ

(IdZ ⊗eZ) = q(2).

Note q(1) 6= 0 because

IdZ = (IdZ ⊗eZ)(iZ ⊗ IdZ)
︸ ︷︷ ︸

IdZ

(eZ ⊗ IdZ)(IdZ ⊗iZ)
︸ ︷︷ ︸

IdZ

= (IdZ ⊗eZ)q(1)(IdZ ⊗iZ)

and similarly q(2) 6= 0 either. Let α = eZ iZ ∈ End(11) = F . Then

q2 = iZ eZ iZ
︸ ︷︷ ︸

α

eZ = α q.

and hence q2
i = α qi for i = 1, 2.

Observe that q ∈ End(Z⊗2) which is a semisimple F -algebra, hence isomorphic

to a direct sum of full matrix rings. Suppose α = 0 hence q is nilpotent. As q can only

be nonzero on the direct summand 11 of Z⊗2 and the multiplicity of 11 is 1, q is nilpotent

if and only if q = 0. But then q(1) = 0, which we have proven is not the case. Therefore

α 6= 0.

Note (1/α q(i))2 = 1/α q(i) for i = 1, 2 and im1/α q(i) = im pi. Hence

p(2) p(1) p(2) =
1

α3
q(2) q(1) q(2) =

1

α3
q(2) 6= 0.

Let f ∈ End(Z⊗2). Note that Z ⊗ 11 = Z, hence p(2)(f ⊗ IdZ)p(2) is a multiple

of p(2). In particular, let f = pX be a projection onto some term X in a direct sum

decomposition of Z⊗2. Define dim X by

(dimX)p(2) = (dimZ)2p(2)(pX ⊗ IdZ)p(2)

where we choose dim Z so that dim 11 = 1. This determines dimZ up to sign and dimX

is clearly independent of the choice of sign. It can be checked that this definition of

dimX is equivalent to the usual one given in Definition 4.9 for direct summands in Z⊗2.

Let c1 = cZ,Z ⊗ IdZ and c2 = IdZ ⊗cZ,Z . By the definition of braiding c1 c2 c1 =

c2 c1 c2. Assume Z⊗2 =
⊕

i Xi where the Xi are d nonisomorphic simple objects of

nonzero dimension. Then the braiding cZ,Z acts on these simple objects via scalars λi.

Assume that the λi are distinct.



37

Proposition 4.11. In this case, we can define an action of B3 on V = Hom(Z, Z⊗3) by

σif = ci ◦ f for f ∈ Hom(Z, Z⊗3). Then V is a simple B3 module and each eigenvalue

of σi is of multiplicity 1.

Proof: Index the Xi so that X1 = 11 ⊆ Z⊗2. Then p(1) = pX1
⊗ IdZ and p(2) = IdZ ⊗pX1

.

Let ı : 11 → Z⊗2 be a nonzero morphism. Then im ı = x1. As dimXi 6= 0, the projections

p(i) must be nonzero when restricted to Z⊗X1 ⊆ Z⊗3. Hence vi = (p(i)⊗IdZ)(IdZ ⊗ı) 6=
0 and σ1vi = λivi. As dim Hom(Z, Z⊗3) = dim Hom(Z⊗2, Z⊗2), the vi form an eigenbasis

of V for c1.

Suppose V is not simple. Let 0 ⊆ V1 ⊆ . . . ⊆ Vn = V be a composition series of

V . Clearly, each p(i) ⊗ IdZ acts nonzero on exactly one simple factor in the series, and

each simple factor has at least one p(i) ⊗ IdZ acting nonzero on it. There are at least

two simple factors so we can choose i so that p(i) ⊗ IdZ and p(1) act nonzero on different

simple factors. Since p(2) is conjugate to p(1), p(2) acts nonzero on the same simple factor

as p(1), Hence p(2)(p(i) ⊗ IdZ)p(2) = 0 which would contradict dimxi 6= 0.

Corollary 4.12. We have

dimXi = µ
(d)
i1 (dimZ)2

with µ
(d)
i1 as in Chapter 3.

Proof: As the eigenvalues are all of multiplicity 1, we have well-defined eigenprojections

p(i) = P
(d)
i (c1)/P

(d)
i (λi) and p(2) = P

(d)
1 (c2)/P

(d)
1 (λ1). Hence

(dimXi)
P

(d)
1 (c2)

P
(d)
1 (λ1)

= (dimZ)2
P

(d)
1 (c2)P

(d)
i (c1)P

(d)
1 (c2)

P
(d)
1 (λ1)P

(d)
i (λi)P

(d)
1 (λ1)

= (dimZ)2
Q

(d)
i1 P

(d)
1 (c2)

P
(d)
1 (λ1)P

(d)
i (λi)P

(d)
1 (λ1)

.

In particular, let C be a braided tensor category whose Grothendieck semiring

is isomorphic to that of the representation category of g where g is of orthogonal or

symplectic type. Let Z ∈ C be the object corresponding to the vector representation of

g. Then Z ⊗Z ∼= 11⊗X ⊗Y and the above result applies with d = 3. Choose alpha ∈ C

so that the eigenvalues of c1 on X and Y are αq and −αq−1. Denote the eigenvalue on
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11 by r−1. It can be shown that α is a fourth root of 1, but we will not need it in this

discussion. The categorical dimensions are

dimX =

(
rq − r−1q−1

q2 − q−2
+ 1

)
r − r−1

q − q−1

dimY =

(
rq−1 − r−1q

q2 − q−2
+ 1

)
r − r−1

q − q−1

dimZ = ±
(

r − r−1

q − q−1
+ 1

)

.

It is possible to prove that r = qN−1 for g is orthogonal type and r = q−N−1 if it is

symplectic.

If g is an exceptional Lie algebra, we can choose Z to correspond to the adjoint

representation to get a 5-dimensional simple representation of B3. The categorical di-

mensions of the 5 simple summands of Z ⊗Z can be computed like in the previous case

(see [11]).
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